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Exercise 5.1. Let X = Rn and define the function dinfty : Rn × Rn → R as

d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

Show that d∞ is a metric on Rn.

Solution: We must verify the three properties M1-M3.
M1: By the properties of the modulus function, for all x ∈ R, |x| ≥ 0. This implies

that d∞(x, y) ≥ 0. Moreover, for every x ∈ R, |x| = 0 iff x = 0. Therefore, d∞(x, y) = 0
iff xi = yi for all i = 1, 2, . . . , n iff x = y.

M2: Since | − x| = |x|, we have

d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|} = max{|y1 − x1|, . . . , |yn − xn|} = d∞(y, x).

M3: Let

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn)

be arbitrary elements in Rn. By the triangle inequality for the modulus, for every i =
1, 2, . . . , n, we have

|xi − zi| ≤ |xi − yi|+ |yi − zi|.

For every k ∈ {1, 2, . . . n} we have

|xk − zk| ≤ |xk − yk|+ |yk − zk|
≤ max{|x1 − y1|, . . . , |xn − yn|}+ max{|y1 − z1|, . . . , |yn − zn|}
= d∞(x, y) + d∞(y, z).

This implies that

d∞(x, z) = max{|x1 − z1|, . . . , |xn − zn|} ≤ d∞(x, y) + d∞(y, z).

Alternatively, the last step for the proof of property M3, can be given as follows. First
note that if A and B are finite sets of real numbers, we have

max(A+B) ≤ maxA+ maxB.

Therefore,

d∞(x, z) = max{|x1 − z1|, . . . , |xn − zn|}
= max{|x1 − y1 + y1 − z1|, |x2 − y2 + y2 − z2|, . . . , |xn − yn + yn − zn|
≤ max{|x1 − y1|+ |y1 − z1|, |x2 − y2|+ |y2 − z2|, . . . , |xn − yn|+ |yn − zn|}
≤ max{|x1 − y1|, . . . , |xn − yn|}+ max{|y1 − z1|, . . . , |yn − zn|}
= d∞(x, y) + d∞(y, z).

Please send any corrections to d.cheraghi@imperial.ac.uk
Questions marked with ∗ are optional
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Exercise 5.2. Show that each of the following functions is a metric on R:

(i) d(x, y) = |x3 − y3|, (here x3 means x raised to power 3)

(ii) d(x, y) = |ex − ey|,

(iii) d(x, y) = | tan−1(x)− tan−1(y)|.

Which property of the maps x 7→ x3, x 7→ ex, and x 7→ tan−1(x) makes these functions
a metric.

Solution: Let f(x) stand for any of the functions x 7→ x3, x 7→ ex, and x 7→ tan−1(x). By
the properties of the modulus function, we immediately obtain d(x, y) ≥ 0, and d(x, y) =
d(y, x). Also, by the inequalities

d(x, y) = |f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| = d(x, z) + d(z, y),

we obtain the triangle inequality for the functions d in each case.
There remains to see that d(x, y) = 0 iff x = y. Clearly, if x = y, d(x, x) = 0. The

opposite implication follows from the fact that f is injective in all the three cases. That
is, if f(x) = f(y) for some x and y in R, we must have x = y.

This exercise shows that there are many metrics on R, as there are many injective maps
from R to R. Note that the continuity of f is not required here.

Exercise 5.3. Assume that a < b are real numbers, and h : (a, b)→ (0,∞) is a continuous
function. For x and y in (a, b), we define

dh(x, y) =

∫ max{x,y}

min{x,y}
h(t) dt.

Show that dh is a metric on (a, b).

Solution: M2: Since {x, y} = {y, x} as sets, by the definition of dh, we immediately see
that dh(x, y) = dh(y, x). Therefore, without loss of generality, below we assume that x ≤ y.

M1: For real numbers x ≤ y and a function h ≥ 0, the Riemann integral satisfies∫ y
x h(t)dt ≥ 0. Moreover, by the definition of integral, if x = y we have

∫ y
x h(t)dt = 0. On

the other hand, by a lemma proved in the typed lectures, if h > 0 and x < y, we must
have

∫ y
x h(t)dt > 0. Since h > 0, this implies that if

∫ y
x h(t)dt = 0 we must have x = y.

Therefore, dh(x, y) = 0 iff x = y.
M3: Let x, y and z be arbitrary real numbers. Without loss of generality, assume that

x ≤ y. Recall from the properties of the Riemann integral that if x ≤ z ≤ y, we have∫ y

x
h(t)dt =

∫ z

x
h(t)dt+

∫ y

z
h(t)dt.

This implies that for all real numbers x ≤ z ≤ y, we have

dh(x, y) ≤ dh(x, z) + dh(z, y).

If z /∈ [x, y], we must either have z ≤ x or z ≥ y. In the first case, we have [x, y] ⊂ [z, y],
and hence ∫ y

x
h(t)dt ≤

∫ y

z
h(t)dt =

∫ x

z
h(t)dt+

∫ y

x
h(t)dt
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and in the second case we have [x, y] ⊆ [x, z], and hence∫ y

x
h(t)dt ≤

∫ z

x
h(t)dt =

∫ y

x
h(t)dt+

∫ z

y
h(t)dt.

Each of these inequalities imply that

dh(x, y) ≤ dh(x, z) + dh(z, y).

Exercise 5.4. Consider the function g : R× R→ R defined as

g(x, y) = |x− y|2.

Show that g is not a metric on R.

Solution: It is sufficient to show that one of the properties of the metric does not hold.
Consider the three points 2, 3, 4. Then,

g(2, 4) = 4 
 1 + 1 = g(2, 3) + g(3, 4).

This shows the triangle inequality does not hold for the three points 2, 3, 4.
Another counter example is given by the three points 0, 10, 20 in R, as

g(0, 20) = 400 
 200 = 100 + 100 = g(0, 10) + g(10, 20).

Exercise 5.5. Let X = R2, and define drail : R2 × R2 → R as

drail(x, y) =

{
‖x− y‖ if x = ky for some k ∈ R
‖x‖ + ‖y‖ otherwise

Show that drail is a metric on R2.
This is called the British rail metric. The intuition behind this metric is that if two

towns are on the same rail line, then we travel between them, but if the towns are on
distinct lines, we travel via London (represented as the origin in R2).

Solution: The properties drail(x, y) ≥ 0, drail(x, y) = 0 iff x = y, and drail(x, y) =
drail(y, x) easily follow from the properties of the norm. We need to show the triangle
inequality for drail. Let x, y, and z be arbitrary points in R2. We consider few cases below.

1) Assume that there is k ∈ R such that x = ky.

drail(x, y) = ‖x− y‖ ≤ ‖x− z‖ + ‖z − y‖ ≤ drail(x, z) + drail(z, y),

since we always have ‖a− b‖ ≤ ‖a‖ + ‖b‖.
2) Assume that for all k ∈ R we have x 6= ky. In particular, x 6= 0. There are several

cases to look at in this case.
(i) z = 0. We have

drail(x, y) = ‖x‖ + ‖y‖ = drail(x, 0) + drail(0, y)
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(ii) There is m ∈ R \ {0} such that z = my. Then, for all s ∈ R, we have z 6= sx,
otherwise my = sx, and (as s 6= 0) x = (m/s)y, which is a contradiction. In particular,

drail(x, y) = ‖x‖ + ‖y‖ ≤ ‖x‖ + ‖z − y‖ + ‖z‖ = drail(x, z) + drail(z, y).

(iii) There is l ∈ R\{0} such that z = lx. This is similar to case (ii), as one may switch
x and y in that proof.

(iv) For all m ∈ R, we have z 6= my and z 6= mx. Then,

drail(x, y) = ‖x‖ + ‖y‖ ≤ ‖x‖ + ‖z‖ + ‖z‖ + ‖y‖ = drail(x, z) + drail(z, y).

Exercise 5.6. Assume that a < b are real numbers. Show that each of the following
functions is a norm on C([a, b]):

(i)

‖f‖1 =

∫ b

a
|f(t)| dt

(ii)
‖f‖∞ = max

t∈[a,b]
|f(t)|

(iii)

‖f‖2 =

(∫ b

a
|f(t)|2 dt

)1/2

Hint: to show that ‖·‖2 is a norm, you need to use the Cauchy-Schwarz inequality and
the definition of the integral as the limit of certain sums.

Solution: (i) By the properties of the Riemann integral, ‖f‖1 ≥ 0. By a lemma in the
lecture notes, ‖f‖1 = 0 iff f ≡ 0. For every λ ∈ R, we have

‖λf‖1 =

∫ b

a
|λf(t)| dt =

∫ b

a
|λ||f(t)| dt = |λ|

∫ b

a
|f(t)| dt = |λ| ‖f‖1 .

Moreover, for all f and g in C([a, b]), we have

‖f + g‖1 =

∫ b

a
|f(t) + g(t)| dt ≤

∫ b

a
(|f(t)|+ |g(t)|) dt =

∫ b

a
|f(t)| dt+

∫ b

a
|g(t)| dt,

which implies that ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.
(ii) For every f in C([a, b]), the maximum of f on [a, b] is realised, so ‖f‖∞ is well-

defined, and a real number. Evidently, ‖f‖∞ ≥ 0, and ‖f‖∞ = 0 iff f ≡ 0. Moreover, for
all λ ∈ R, we have

‖λf‖∞ = max
t∈[a,b]

|λf(t)| = max
t∈[a,b]

(|λ||f(t)|) = |λ| max
t∈[a,b]

|f(t)| = |λ| ‖f‖∞ .

Finally, for all f and g in C([a, b]), we have

‖f + g‖∞ = max
t∈[a,b]

|f(t) + g(t)|

≤ max
t∈[a,b]

(|f(t)|+ |g(t)|)

≤ max
t∈[a,b]

|f(t)|+ max
t∈[a,b]

|g(t)|

= ‖f‖∞ + ‖g‖∞ .
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(iii) Fix arbitrary functions f and g in C([a, b]). We note that for all λ ∈ R, we have∫ b

a
(f(t)− λg(t))2 dt ≥ 0.

This implies that ∫ b

a
f(t)2 dt− 2λ

∫ b

a
f(t)g(t) dt+ λ2

∫ b

a
g(t)2 dt ≥ 0.

One may think of the expression on the left hand side of the above equation as a quadratic
polynomial in λ. We know that if a quadratic polynomial of the above form is non-negative,
then the discriminant (“b2 − 4ac”) must be non-positive, that is,

4

(∫ b

a
f(t)g(t) dt

)2

≤ 4

∫ b

a
f(t)2 dt ·

∫ b

a
g(t)2 dt.

This implies that for all f and g in C([a, b]), we have∣∣∣∣∣
∫ b

a
f(t)g(t) dt

∣∣∣∣∣ ≤ ‖f‖2 ‖g‖2 .
The above inequality is known as the Cauchy–Schwarz inequality. It is also possible to
prove the above inequality, using the definition of the integral as limits of sums, and using
the Cauchy-Schwarz inequality in Rn.

Using the Cauchy-Schwarz inequality, we can see that for all f and g in C([a, b]), we
have

‖f + g‖22 =

∫ b

a
|f(t) + g(t)|2 dt =

∫ b

a
f(t)2dt+ 2

∫ b

a
f(t)g(t)dt+

∫ b

a
g(t)2dt ≤ (‖f‖2 + ‖g‖2)

2,

which implies that ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.
The other properties for ‖·‖2 can be proved by arguments similar to the ones for ‖·‖1.

Exercise 5.7. Show that if V is a vector space, and ‖·‖ : V → R is a norm function,
then for any v ∈ V , we must have d‖‖(0, 2v) = 2 d‖‖(0, v). Conclude that there is no norm
function on R2 which induced the discrete metric ddisc on R2.

Solution: Since for every norm function, any v ∈ V and any λ ∈ R, we have ‖λv‖ =
|λ| ‖v‖, we must have

d‖‖(0, 2v) = ‖2v‖ = 2 ‖v‖ = 2 d‖‖(0, v).

For the discrete metric, we have

ddisc((0, 0), (1, 1)) = ddisc((0, 0), (2, 2)) = 1,

which does not satisfy the above relation when v = (1, 1).

Exercise 5.8. Let (X,d) be a metric space.
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(i) Show that for every x, y, and z in X, we have

|d(x, z)− d(y, z)| ≤ d(x, y).

(ii) Show that for all x, y, z and t in X, we have

|d(x, y)− d(z, t)| ≤ d(x, z) + d(y, t).

(iii) Show that for all x1, x2, . . . , xn in X, we have

d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn).

Solution: (i) Using the triangle inequalities

d(x, z) ≤ d(x, y) + d(y, z), d(y, z) ≤ d(x, y) + d(x, z),

we obtain
−d(x, y) ≤ d(x, z)− d(y, z) ≤ d(x, y),

which is equivalent to the the desired inequality.

(ii) Using the triangle inequality two times, we obtain

d(x, y) ≤ d(x, z) + d(y, z) ≤ d(x, z) + d(z, t) + d(y, t),

and
d(z, t) ≤ d(z, x) + d(x, t) ≤ d(z, x) + d(x, y) + d(y, t).

By adding and subtracting appropriate terms, we obtain

d(x, y)− d(z, t) ≤ d(x, z) + d(y, t),

and
− (d(x, z) + d(y, t)) ≤ d(x, y)− d(z, t).

These two inequalities imply the desired inequality in part (ii).

(iii) We prove the desired statement by induction on the number of points, n. For
n = 2 the inequality is obvious. Assume that the inequality holds for n points. For any
collection of n+ 1 points, x1, x2, . . . , xn+1, we have

d(x1, xn+1) ≤ d(x1, xn) + d(xn, xn+1)

≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn) + d(xn, xn+1).

Exercise 5.9. Let (X,d) be a metric space.

(i) Show that if ε < δ, then Bε(x) ⊆ Bδ(x). By an example, show that the equality may
hold even if ε < δ.

(ii) Show that for every x ∈ X, we have⋂
n∈N

B1/n(x) = {x}.
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Solution: (i) If y ∈ Bε(x), then d(x, y) < ε, and hence d(x, y) < δ. Therefore, y ∈ Bδ(x).
In the discrete metric on R, B2(0) = B3(0) = R.

(ii) It is enough to show that {x} ⊆ ∩n∈NB1/n(x) and ∩n∈NB1/n(x) ⊆ {x}. Since for
all n ≥ 1 we have x ∈ B1/n(x), we conclude that x ∈

⋂
n∈NB1/n(x).

Fix an arbitrary y ∈ ∩n∈NB1/n(x). Then, for every n ≥ 1 we have d(x, y) < 1/n. This
implies that d(x, y) = 0, and by the property of the metrics, we obtain y = x. Therefore,
y ∈ {x}.

Exercise 5.10. (i) Show that for all x and y in Rn, we have

d∞(x, y) ≤ d2(x, y) ≤
√
n · d∞(x, y).

(ii) Show that for all x and y in Rn, we have

d∞(x, y) ≤ d1(x, y) ≤ n · d∞(x, y).

(iii) Show/conclude that for all x and y in Rn, we have

1√
n

d2(x, y) ≤ d1(x, y) ≤
√
n d2(x, y).

(iv) Conclude that the metrics d1, d2 and d∞ on Rn are topologically equivalent.

Solution: (i) This is the statement in Exercise 1.2, formulated in a different form.

(ii) If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), we have

max
j=1,...,n

|xj − yj | ≤
n∑
j=1

|xj − yj | ≤ n max
j=1,...,n

|xj − yj |.

(iii) These immediately follow from the inequalities in part (i), (ii).

(iv) We need to show that for any set U ⊆ Rn, U is open with respect to d1, if and
only if U is open with respect to d2, if and only if U is open with respect to d∞. Let us
assume that U is open with respect to d1.

Fix an arbitrary x ∈ U . Since U is open with respect to d1, there is r > 0 such that

Br(x,Rn, d1) ⊆ U.

By the right-hand side of the inequality in part (iii), we have

Br/
√
n(x,Rn,d2) ⊆ Br(x,Rn, d1).

Therefore,
Br/
√
n(x,Rn,d2) ⊆ U.

Because x ∈ U was arbitrary, this implies that U is open with respect to d2.
Similarly, by the right-hand side of the inequality in part (ii), we have

Br/n(x,Rn, d∞) ⊆ Br(x,Rn,d1).

This implies that
Br/n(x,Rn, d∞) ⊆ U.

As x ∈ U was arbitrary, this implies that U is open with respect to d∞.
All the other implications can be proved in a similar fashion using the other sides of

the inequalities in part (ii) and (iii).
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Unseen Exercise. Let E = {1, 2, 3, 4, 5, 6}, and let P(E) be the set of all subsets of E.
Consider the metric dcard on P(E) (see typed lecture notes). Let e = {1, 2, 3} ∈ E . What
is B1/2(e)? What is B1(e)? What is B3/2(e)?

Solution: By definition, Bε(e) is the set of all points y ∈ P(E) such that dcard(e, y) < ε.
By definition, dcard(x, y) = Card(x∆y).

Fix an arbitrary r ∈ (0, 1). If y ∈ P(E), and dcard(e, y) < r, we must have

Card((e \ y) ∪ (y \ e)) = Card(e \ y) + Card(y \ e) < r.

This is because the sets e \ y and y \ e are disjoint sets. The above inequality implies that

Card(e \ y) < 1, and Card(y \ e) < 1.

The inequality on the left hand side implies that e \ y = ∅ and hence e ⊆ y. Similarly,
the inequality on the right hand side implies that y ⊆ e. Therefore, y = e. On the other
hand, since r > 0, we have e ∈ Br(e). Combining these together, we obtain Br(e) = {e}.
In particular, B1/2(e) = B1(e) = e.

By the definition of the metric dcard, is y ∈ B3/2(e), y may have at most one more
element than the set e or at most one element less than e. Therefore,

B3/2(e) = {e, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2}, {1, 3}, {2, 3}}.


