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Exercise 6.1. Let (X,dgisc) be a discrete metric space, and (z,),>1 be a sequence in
X. Then, (x,)n>1 converges in (X, dgisc) if and only if the sequence (z,,)n>1 is eventually
constant.

Solution: Assume (zp)p>1 converges to z € (X,dgisc). Then Ve > 0 there is N s.t.
Vn > N, z, € Be(z). Take for example e = 1/2. Since in our space Byy(z) = {z}, we
have x,, = x, Vn > N. In other words, the sequence is eventually constant.

For the opposite implication, assume that there is N € N such that for all n > N we
have z, = xy. Then, for all € > 0, x,, € Bc(zy,). Thus, for all ¢ > 0, and all n > N,
xy, € Be(zn). This implies that the sequence (zy,)n>1 converges to xy.

Exercise 6.2. Let (X,d) be a metric space, and (z,,)n>1 be a sequence in X. Prove that
the sequence (x,,),>1 converges to € X if and only if, for every open set U in (X, d) with
x € U, there is N € N such that for all n > N, we have z,, € U.

Hint: U can be the ball By (x).

Solution: Assume that (z,,),>1 converges to z € X. Let U be an arbitrary open set which
contains x. Since U is open and x € U, there is 6 > 0 such that Bs(x) C U. Since (zp)n>1
converges to z, for 0 there is N = N(J) such that for all n > N we have z,, € Bs(x). Since
Bs(z) C U, for all n > N we have z,, € U.

For the opposite implication assume that (z,),>1 is a sequence in X and for any open
set U C X with x € U, there is N such that for all n > N, we have x,, € U. Fix
an arbitrary € > 0 and define U = B¢(x) (recall that any ball is an open set). By the
hypothesis, there is N € N such that for all n > N, x,, € U = B.(z). As € was arbitrary,
we conclude that (x,),>1 converges to .

Exercise 6.3. Let (X, dgisc) be a discrete metric space. Then every set in X is closed.
Hint: First show that every set in X is open with respect to dgjsc.

Solution: We show first that every set in X is open. Let us fix an arbitrary set A C X.
For any x € A, we have z € By 5(7) = {z} C A. By definition, this means that A is open.
Thus any set in X is open. Now take an arbitrary set B € X. We have just shown that
X \ B is open. Therefore, by a theorem in the lectures, B is closed.

Exercise 6.4. Let (X,d) be a metric space, and V be a subset of X. Show that the set
V is closed if and only if V = V.

Hint: use the definition of closed sets, and the definition of the closure of a set.
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Solution: By definition, V is the union of V with all its accumulation points.

First assume that V' is closed. Then, by definition, for any sequence (z),>1 in V
which converges to # € X, = belongs to V. We need to show that V = V, for which it
suffices to verify that all accumulation points of V' belong to V. Let a be an accumulation
point of V. Then, for any € > 0 the set B.(a) NV contains a point of V' different from a.
For a natural number n, let x,, € By,(a) N V. Then, z,, n = 1,2,..., is a sequence of
points in V' converging to a. Since we assumed V closed, we must have a € V. As a was
an arbitrary accumulation point of V, we conclude that V C V.

On the other hand, assume that V = V. Assume that (x,),>1 be an arbitrary sequence
in V' which converges to some x € X. To show that V is closed, we need to verify that
x € V. If there is ng € N such that x = x,,,, then we are done. So let us assume that for
all n € N, we have x # x,. Since (z,)n>1 belongs to V' and converge to z € X, any ball
centred at x contains some element x,, which we assumed different from z. Thus, x is an
accumulation point of V, and since V.=V, z € V.

Unseen Exercise. (unseen) Let V' and W be subsets of a metric space (X,d). The
following properties hold:

(i) if V.C W, then V° C W°,
(ii) if V.C W, then V C W,

Solution: Let V C W.

(i) Fix an arbitrary « € V°. There is € > 0 such that B.(z) C V. As V. C W, we have
B.(xz) € W. Thus, there is € > 0 such that B¢(x) C W. This means that z € W°.

(ii) Fix an arbitrary € V. Then, for every 6 > 0, Bs(z) NV # 0. As V C W, for
every 6 > 0, Bs(z) N W # (). This means that x € W.

Exercise 6.5. Let V' and W be subsets of a metric space (X,d). Prove that
VUW=VUuUW.
Give an example of (X,d), V and W such that

(VUW)® #£VeUWe,

Solution: We first show VUW C V UW. Let us fix an arbitrary x € V UW. Suppose
¢ VUW. Then, z ¢ V and x ¢ W. As z ¢ V, there is ¢; > 0 such that B, (z)NV =0,
and since z ¢ W, there is ea > 0 such that Be,(x) N W = (). Let ¢ = min{ey,e2}. Then,
Be(z) N (VUW) = 0. This contradicts x € VU W.

Now we show that V UW C V UW. Fix an arbitrary £ € V UW. Then either z € V,
orx € W. If x € V, then for every § > 0, Bs(x)NV # (). This implies that for every § > 0,
Bs(z) N (VUW) # 0. This means that € V UW. Similarly, by the same argument, if
x € W, we conclude that x € VU W.

For the second part of the question, we consider (R,d;), Q° = 0 and (R\ Q)° = 0, but
R° = R # 0.

Exercise 6.6.* Let (X, d) be a metric space, and V be a subset of X. Prove that



(i) the set V° is open, and V° is the largest open set contained in V;
(i) the set V is closed, and V is the smallest closed set which contains V.

Hint: For the latter part of (i), you need to show that if @ CV and Q is an open set
in (X,d), then Q C V°. For the latter part of (ii), you need to show that if V.C A and A
is a closed set in (X,d), then V C A.

Solution: (i) First we show that V° is an open set. Let z be an arbitrary point in V°.
Then, there is § > 0 such that Bs(z) C V. We claim that Bs(z) C V°. To see that, fix an
arbitrary y € Bs(z). There is r > 0 such that B,(y) C Bs(z). Since, Bs(z) C V, we must
have B,.(y) C V. This means that y € V°. As y in Bys(z) was arbitrary, we conclude that
Bs(z) C V°. As z € V° was arbitrary, we conclude that V° is an open set.

Now we show that V° is the largest open set contained in V. To see that, let €2 be an
arbitrary open set contained in V. For every z € {2, since () is an open set, there is r > 0
such that B,(z) C Q. As Q C V, we have B,(z) C V. This implies that z € V°. Since
z € Q) was arbitrary, we conclude that 2 C V°.

(ii) Let us first show that V is closed. To see that, let (x,,),>1 be an arbitrary sequence
in V which converges to some z € X. Let r > 0 be arbitrary. Since (n)n>1 converges to
x, there is n € N such that x,, € B, jo(x). Since z,, € V, the set B, j5(x,) NV # (), so there
is 2 € By a(w,) NV, Then,

d(z,z) < d(z,zp) + d(zp,z) <7/24+71/2 =T

This implies that z € B,.(z), and hence B,(z)NV # (). Asr > 0 was arbitrary, we conclude
that z € V. Since (z,,)n>1 Wwas an arbitrary sequence in V (and we showed that its limit
is contained in V'), we conclude that V is a closed set.

For the latter part of item (ii), assume that F'is a closed set in X, which contains V.
We need to show that V' C F. Let z be an arbitrary point in V. By the definition of V,
for every n € N, there is 2, € By/,(2) NV. This generates a sequence (2,)n>1 in V' which
converges to z. Since V C F', the sequence (zy)p>1 is contained in F', and because F' is
closed, we must have z € F. Therefore, V C F.

Exercise 6.7. Let (A;,d;) and (Az,d2) be metric spaces. A map f: A — Ag is contin-
uous if and only if the pre-image of any closed set in Ay is a closed set in A;.

Solution: Let f : Ay — As be continuous, and a set ' C Ay be closed. Then Ay \ F' is
open, as a complement of an open set by a theorem in lectures. By another theorem in
lectures, f : Ay — Ao is continuous if and only if the preimage of any open set is open.
Thus the preimage f~!(A2\ F) is open. But we know that the preimage of the complement
is the complement of the preimage, f~1(A42 \ F) = Ay \ f~1(F), so that f~1(F) is closed
(as the complement of an open set).

Conversely, assume that the preimage of any closed set in As is a closed set in Aj.
Let © C As be open. Then Ay \ Q is closed. Therefore f~1(A2\ Q) = Ay \ f71(Q) is
closed. Hence f~1(Q) is open. Thus we showed that the preimage of any open set is open.
Therefore, by a theorem in the lectures, f is continuous.



Exercise 6.8. Recall that the set of all continuous functions from [0, 1] to R is denoted
by C([0,1]). We also defined the metrics d;, da and do on C([0,1]). Consider the map

o :C([0,1]) = R,
defined as
o(f) = f(1/2).

(i) Is the map @ from the metric space (C(]0,1]),ds) to (R,d;) continuous? Justify
your answer.

(i) Is the map ® from the metric space (C([0,1]),d;) to (R,d;) continuous? Justify your
answer.

(iii) Is the map ® from the metric space (C([0,1]),d2) to (R, d;) continuous? Justify your
answer.

Hint: draw the graphs of few functions, and think about what it means for two functions
in C([0,1]) to be close together in each of those metrics.

Solution: (i) Yes. To see this, let € > 0 be arbitrary. We define 6 = €. Assume that for
some f and g in C([a, b]) we have

deo(f,9) = sup |f(x) —g(z)] <.
z€0,1]

Then,

di(f(1/2),9(1/2)) = [f(1/2) = g(1/2)] < sup [f(z) —g(z)| <o =e

z€[0,1]

Since this holds for all f, g, the map ® from the metric space (C([0,1]),dx) to (R,d;) is
continuous (indeed, it is uniformly continuous).

(ii) This is not continuous. To see that, consider the sequence of functions (f,),>1 in
C(]0,1]) defined as follows. For each n > 1, let

0 if z €1[0,1/2 —1/n],
ne—n/2+1 ifzell/2-1/n,1/2],
l—nzx+n/2 ifxell/2,1/2+1/n],
0 ifzxel/2+1/n,1].

fulz) =

Also consider the constant function g =0 on [0,1]. Then

1
di(fn,9) —/O |fn(t) — g(t)|dt = %

Thus, d(fn,g) — 0asn — oo. Therefore, f,, converges to ¢ in the metric space (C([0, 1]),d1).
However, by construction ®(f,,) = f,(1/2) =1 for all n, so ®(f,,) converges to 1 in (R, d;).
But, ®(g) = ¢g(1/2) = 0. Therefore, ®(f,,) does not converge to ®(g) as n — oo.

(iii) This is not continuous. The example in part (ii) works in this case as well.



Exercise 6.9. Consider the metric spaces X = (R,d;) and Y = (R, dgisc). Show that the
map f(z) =z from X to Y is not continuous. Show that the map g(z) = z from ¥ to X
is continuous.

Solution: Recall that in the discrete metric, any set is open. Also, a map is continuous iff
the preimage of any open set is an open set. Consider the open set [0, 1] in Y. The preimage
of this set under f is [0, 1], which is not open in X = (R, d;). Therefore, f: X — Y is not
continuous.

Take any open set A in X. Its preimage g~ '(A) = A is a subset of Y and therefore it
is open in Y. Hence, g : Y — X is continuous.

Exercise 6.10. Consider the sequence of functions f, : [0,1] — R, for n > 1, defined as

fola) = {1 —nx ifx€0,1/n]

o otherwise.
Let f:[0,1] — R be the constant map f = 0.

(i) Show that the sequence (fy)n>1 in C([0,1]) converges to f in the metric space
(C([0,1],d1).
(ii) Show that the sequence (fn)n>1 in C([0,1]) does not converge to f in the metric
space (C([0,1],dso)-
(iii) Conclude that the identity map
id : (C((0,1]),d1) — (C([0,1]), doo)

is not continuous.
Solution: (i) We have

1
1
dy(f,0) = / L= L 50, asn— oo
0 2n

This implies that (f,),>1 converges to f =0 in (C([0,1],dy).

(ii) We have
doo(fn,0) = sup |fau(x)| =1, Vn > 1.

Therefore, doo(fn,0) does not tend to zero as n — co. Thus, (fy)n>1 does not converge to
f =0 in the metric space (C(][0, 1], dso)-

(iii) We have id(f,) = fn € (C([0,1],ds). In part (i) we showed that f, — f in
(C([0,1],dy). If id is continuous, we must have id(f,) — id(0) = f as n — oo, in the
metric space (C([0,1],ds). However, in part (ii) we showed that (f)n>1 € (C([0,1],dx)
does not converge to f in the metric space (C([0,1],ds). This contradiction shows that
id is not continuous.

Exercise 6.11. Let (X,dx) and (Y, dy) be metric spaces, and f : X — Y be a surjective
map. Show that if f is bi-Liptschitz, then it is a homeomorphisms.



Solution: We have some constants My, Ms > 0 s.t. for all x,y € X
Mydx(z,y) < dy(f(z), f(y)) < Madx(z,y).

Let us first show that f is injective. Assume that for some z; and zs in X we have
f(xz1) = f(x2). Then, by the above inequality, we must have dx(z,y) < 0. By the
properties of the metric dx, that implies that x = y. Therefore, f is injective.

By the hypothesis f is surjective. Therefore, f is a bijective map.

Let us first show that f is continuous. Fix an arbitrary € > 0. Let § = ¢/Ms. For
every x1 and zo in X with dx(z1,22) < §, we have dy (f(z1), f(z2)) < Madx(z,y) < e.
Therefore, f is continuous (indeed, it is uniformly continuous).

Now we show that f~! is continuous. Let e > 0 be arbitrary. Define § = eM;. Let 1
and yo be arbitrary elements in Y such that dy (y1,y2) < §. Then,

dx (f " ), £ (w2) < Azldy@l,yz) < A}lMle .



