Problem Sheet 6	Analysis II
Davoud Cheraghi	Autumn 2021

Exercise 6.1. Let (X, d_{disc}) be a discrete metric space, and $(x_n)_{n\geq 1}$ be a sequence in X. Then, $(x_n)_{n\geq 1}$ converges in (X, d_{disc}) if and only if the sequence $(x_n)_{n\geq 1}$ is eventually constant.

Exercise 6.2. Let (X, d) be a metric space, and $(x_n)_{n\geq 1}$ be a sequence in X. Prove that the sequence $(x_n)_{n\geq 1}$ converges to $x \in X$ if and only if, for every open set U in (X, d) with $x \in U$, there is $N \in \mathbb{N}$ such that for all $n \geq N$, we have $x_n \in U$.

Exercise 6.3. Let (X, d_{disc}) be a discrete metric space. Then every set in X is closed.

Exercise 6.4. Let (X, d) be a metric space, and V be a subset of X. Show that the set V is closed if and only if $\overline{V} = V$.

Exercise 6.5. Let V and W be subsets of a metric space (X, d). Prove that

$$\overline{V \cup W} = \overline{V} \cup \overline{W}.$$

Give an example of (X, d), V and W such that

$$(V \cup W)^{\circ} \neq V^{\circ} \cup W^{\circ}.$$

Exercise 6.6.^{*} Let (X, d) be a metric space, and V be a subset of X. Prove that

- (i) the set V° is open, and V° is the largest open set contained in V;
- (ii) the set \overline{V} is closed, and \overline{V} is the smallest closed set which contains V.

Exercise 6.7. Let (A_1, d_1) and (A_2, d_2) be metric spaces. A map $f : A_1 \to A_2$ is continuous if and only if the pre-image of any closed set in A_2 is a closed set in A_1 .

Exercise 6.8. Recall that the set of all continuous functions from [0,1] to \mathbb{R} is denoted by C([0,1]). We also defined the metrics d_1 , d_2 and d_{∞} on C([0,1]). Consider the map

$$\Phi: C([0,1]) \to \mathbb{R},$$

defined as

$$\Phi(f) = f(1/2).$$

- (i) Is the map Φ from the metric space $(C([0,1]), d_{\infty})$ to (\mathbb{R}, d_1) continuous? Justify your answer.
- (ii) Is the map Φ from the metric space $(C([0,1]), d_1)$ to (\mathbb{R}, d_1) continuous? Justify your answer.
- (iii) Is the map Φ from the metric space $(C([0,1]), d_2)$ to (\mathbb{R}, d_1) continuous? Justify your answer.

Exercise 6.9. Consider the metric spaces $X = (\mathbb{R}, d_1)$ and $Y = (\mathbb{R}, d_{\text{disc}})$. Show that the map f(x) = x from X to Y is not continuous. Show that the map g(x) = x from Y to X is continuous.

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with * are optional

Exercise 6.10. Consider the sequence of functions $f_n: [0,1] \to \mathbb{R}$, for $n \ge 1$, defined as

$$f_n(x) = \begin{cases} 1 - nx & \text{if } x \in [0, 1/n] \\ 0 & \text{otherwise.} \end{cases}$$

Let $f: [0,1] \to \mathbb{R}$ be the constant map $f \equiv 0$.

- (i) Show that the sequence $(f_n)_{n\geq 1}$ in C([0,1]) converges to f in the metric space $(C([0,1], \mathbf{d}_1))$.
- (ii) Show that the sequence $(f_n)_{n\geq 1}$ in C([0,1]) does not converge to f in the metric space $(C([0,1], d_{\infty}))$.
- (iii) Conclude that the identity map

$$id: (C([0,1]), d_1) \to (C([0,1]), d_\infty)$$

is not continuous.

Exercise 6.11. Let (X, d_X) and (Y, d_Y) be metric spaces, and $f : X \to Y$ be a surjective map. Show that if f is bi-Liptschitz, then it is a homeomorphisms.