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Exercise 7.1. Consider a discrete metric space (X,ddisc), that is ddisc is a discrete metric
on X. Show that ddisc induces the discrete topology on X.

Hint: Identify the open sets in the discrete metric.

Solution Let A ⊂ X. Take any point x ∈ A. Recall that in the discrete metric we have
B1/2(x) = {x}, and so B1/2(x) ⊂ A. Thus A is an open set in (X,ddisc). Since A is
arbitrary, we conclude that any set in (X,ddisc) is open. By definition, these sets form the
discrete topology on X.

Exercise 7.2. Let (X, τ) be a topological space, Y ⊂ X, and

τY = {U ∩ Y | U ∈ τX}.

Show that τY is a topology on Y .
Hint: you need to verify the three properties for the topology, and use basic relations

for unions and intersections of sets.

Solution We must check that the collection τY satisfies 3 properties of a topology on Y .

(T1) Since U = ∅ ∈ τX and ∅ ∩ Y = ∅, we have that ∅ ∈ τY . Also, since X ∈ τX and
X ∩ Y = Y , we have that Y ∈ τY .

(T2) Let Vα be arbitrary elements of τY , for α in some set I. We need to show that
∪α∈IVα belongs to τY . To show that, first we note that by the definition of τY , since for
every α ∈ I, Vα ∈ τY , there is Uα ∈ τX such that

Vα = Uα ∩ Y.

By the distributive property of the union and intersection, we have

∪α∈IVα = ∪α∈I(Uα ∩ Y ) = (∪α∈IUα) ∩ Y.

Now, since Uα ∈ τX , for every α ∈ I, and τX is a topology on X, we conclude that
∪α∈IUα ∈ τX . Then, (∪α∈IUα) ∩ Y belongs to τY . By the above equation, we conclude
that ∪α∈IVα belongs to τY .

(T3) The argument is similar to the one for (T2).
Let Vα be arbitrary elements of τY , for α in a finite set I. We need to show that ∩α∈IVα

belongs to τY . To show that, first we note that by the definition of τY , since for every
α ∈ I, Vα ∈ τY , there is Uα ∈ τX such that

Vα = Uα ∩ Y.

We have
∩α∈IVα = ∩α∈I(Uα ∩ Y ) = (∩α∈IUα) ∩ Y.

Now, since Uα ∈ τX , for every α ∈ I, I is a finite set, and τX is a topology on X, we
conclude that ∩α∈IUα ∈ τX . Then, (∩α∈IUα) ∩ Y belongs to τY . By the above equation,
we conclude that ∩α∈IVα belongs to τY .
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Exercise 7.3. Let τEucl be the Euclidean topology on R, that is τEucl is the collection of
all open sets in (R,d1). Show that the collection

{U × V | U ∈ τEucl, V ∈ τEucl}.

is not a topology on R× R. Is condition T2 satisfied? How about condition T3?
Hint: Consider the union of two boxes.

Solution In order to show that the collection in the exercise is not a topology, it is enough
to show that one of the three properties for the topology is not satisfied. The empty set
can be written as ∅× ∅, so it belongs to the above set. Also, the whole set R2 = R×R, so
the whole set belongs to the collection. These show that T1 holds.

We claim that property T2 does not hold. To see that, consider the sets

(0, 2) × (0, 2), and (1, 3) × (1, 3).

Both of the above sets belong to the collection, since they are of the form U × V for some
open sets in R. However, their union does not belong to that collection. That is because,
there are not open sets U and V in R such that

U × V = ((0, 2) × (0, 2)) ∪ ((1, 3) × (1, 3)).

That is because if the above relation holds, we must have

(0, 3) ⊂ U, and (0, 3) ⊂ V,

and hence
(0, 3) × (0, 3) ⊂ U × V ⊂ ((0, 2) × (0, 2)) ∪ ((1, 3) × (1, 3)).

which is not true.

Property T3 is true. Indeed let U1, V1, U2, V2 be open sets in R. That is because a
point

(x, y) ∈ (U1 × V1) ∩ (U2 × V2)

if and only if both x ∈ U1 ∩ U2 and y ∈ V1 ∩ V2. Thus,

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2).

Since U1 and U2 are open in R, U1 ∩ U2 is open in R. Similarly, Since V1 and V2 are open
in R, V1 ∩ V2 is open in R. The above equation show that (U1 × V1) ∩ (U2 × V2) belongs
to the collection in the exercise. This shows that T3 holds for 2 sets. Then, one may use
induction to show that T3 holds for any finite collection.

Exercise 7.4. Let (A, τ) be a topological space, and let S and T be subsets of A. The
following properties hold:

(i) if S ⊂ T then S◦ ⊂ T ◦,

(ii) S is open in A if and only if S = S◦,

(iii)* S◦ is the largest open set contained in S.
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Hint: Compare this to the corresponding exercise for the metric spaces, and see if those
proofs can be adapted here.

Solution (i) If x ∈ S◦, then there is an open set U in A such that x ∈ U and U ⊂ S.
As S ⊂ T , we must have U ⊂ T . Thus, x ∈ U , U is open, and U ⊂ T . This shows that
x ∈ T ◦.

(ii) First assume that S is open in A. By the definition of the interior of a set, we
always that S◦ ⊂ S. We need to show that S ⊂ S◦. Let x ∈ S be an arbitrary point. Since
S is an open set, there is U ∈ τ such that x ∈ U and U ⊂ S. This immediately shows that
x ∈ S◦.

Now assume that S = S◦. Let x be an arbitrary point in S. Since S = S◦, x ∈ S◦. By
the definition of the interior of a set, there is Ux ∈ τ such that x ∈ Ux and Ux ⊆ S. As
x ∈ S was arbitrary, we conclude that

S = ∪x∈SUx

Now, since every Ux ∈ τ , by property T2 of topology, their union also belongs to τ . Thus,
S ∈ τ , in other words, S is open in A.

(iii) Now we show that S◦ is the largest open set contained in S. To see that, let Ω
be an arbitrary open set contained in S. We need to show that Ω ⊂ S◦. Fix an arbitrary
z ∈ Ω. Since z ∈ Ω, Ω ∈ τ , and Ω ⊂ S, we conclude that x ∈ S◦. Since z ∈ Ω was
arbitrary, we conclude that Ω ⊆ S◦.

Exercise 7.5. Let (X,d) be a metric space, and let τ be the topology on X induced from
the metric d. Show that (X, τ) is a Hausdorff topological space.

Hint: For a pair of distinct points, consider the distance between those points, and use
that to define balls around each of the two points, so that they do not intersect.

Solution Let x, y ∈ X, x ≠ y. Then d(x, y) = ϵ > 0. We claim that

Bϵ/3(x) ∩Bϵ/3(y) = ∅.

Assume in the contrary that there exists z in the left hand side of the above equation.
Then, d(x, z) < ϵ/3 and d(y, z) < ϵ/3. By the triangle inequality,

ϵ = d(x, y) ≤ d(x, z) + d(z, y) < 2ϵ/3,

which is a contradiction.
Thus, we have disjoint open sets B1/3(x) and B1/3(y), with x ∈ B1/3(x) and y ∈

B1/3(y). This shows that X with the induced topology is a Hausdorff space.

Exercise 7.6. Assume that the topological spaces (X, τX) and (Y, τY ) are topologically
equivalent. Then, (X, τX ) is Hausdorff if and only if (Y, τY ) is Hausdorff.

Hint: By the hypothesis, there is a homeomorphism from (X, τX) to (Y, τY ). Use this
map to send pairs of distinct open sets to pairs of distinct open sets.
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Solution Let f : X → Y be a homeomorphism. First assume that (Y, τY ) is Hausdorff.
Let x, y ∈ X with x ≠ y. Then, since f : X → Y is injective, f(x) ≠ f(y). Since Y is
Hausdorff, there are open sets U and V in Y such that

f(x) ∈ U, f(y) ∈ V, U ∩ V = ∅.

Since f is continuous, the pre-images f−1(U) and f−1(V ) are open in X. Clearly x ∈
f−1(U) and y ∈ f−1(V ). We also have f−1(U) ∩ f−1(V ) = ∅. If the intersection is not
empty, there is z ∈ f−1(U) ∩ f−1(V ), and hence f(z) ∈ U ∩ V , which is not possible. As
x and y were arbitrary distinct elements in X, this shows that (X, τX) is Hausdorff.

For the other direction, one can repeat the above argument, using the inverse homeo-
morphism f−1 : Y → X.

Exercise. (unseen) Let (X, τX) and (Y, τY ) be topological spaces, and f : X → Y be a
continuous and injective map. Then, if Y is Hausdorff, then X is Hausdorff.

Solution Let x, y ∈ X, x ≠ y. Then, since f : X → Y is injective, f(x) ≠ f(y). Since Y
is Hausdorff, there are open sets U and V in Y such that

f(x) ∈ U, f(y) ∈ V, U ∩ V = ∅.

Since f is continuous, the pre-images f−1(U), f−1(V ) are open in X. Clearly x ∈ f−1(U),
y ∈ f−1(V ). We also have f−1(U)∩f−1(V ) = ∅, since otherwise, any z ∈ f−1(U)∩f−1(V )
implies that f(z) ∈ U ∩ V , which is not possible.


