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Exercise 8.1. Let (X,d) be a metric space. Show that X is connected if and only if the
only subsets of X which are both open and closed are X and ∅.

Hint: In one direction, you have a pair of separating sets, and you can consider of the
open sets in the pair. In the other direction, consider the particular set and its complement.

Solution: First assume that X is connected. Let U be an arbitrary subset of X which
is both open and closed. We need to show that either U = X or U = ∅. Consider the
set V = X \ U . Since U is closed in X, V is open in X. We also have U ∩ V = ∅, and
U∪V = X. If both U and V are not empty, then U and V disconnect X, which contradicts
the assumption. Therefore, at least one of U and V is empty. This implies that either
U = ∅ or U = X.

Now, assume that the only subsets of X which are both open and closed are X and ∅.
Assume in the contrary that X is not connected. Then, there exist U, V ⊂ X such that U
and V are open in X, are not empty, are disjoint, and X = U ∪ V . Therefore V = X \ U
is closed (complement of the open set U). These imply that V 6= X and V 6= ∅, which is
a contradiction.

Exercise 8.2. Show that in the Euclidean metric space (R1,d1), the set of rational num-
bers Q is disconnected.

Hint:pick an irrational number, and consider the set of rational numbers less than that
number, and the set of rational numbers larger than that set.

Solution: Consider the sets

U = (−∞,
√

2) V = (
√

2,+∞).

Then U and V are open in R, and we have

Q ⊂ U ∪ V, U ∩ V = ∅, U 6= ∅, V 6= ∅.

These show that U and V disconnect Q.

Exercise 8.3.* Consider the Euclidean metric space (R, d1), and assume that a and b are
real numbers with a < b.

(i) Show that the interval [a, b) is connected.

Hint: This is a special case of the proof of the connectivity of [a, b]

(ii) Show that the interval (a, b] is connected.

Hint: Modify the proof of the thm showing that [a, b is connected; starting with b
instead of a, modify I, and take the infimum of I.
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(iii) Show that the interval (a, b) is connected.

Hint: Choose u ∈ U ∩ (a, b) and v ∈ V ∩ (a, b), and consider the interval [u, v] or
[v, u], depending on u < v or v < u.

Solution: This is a special case of the proof of the connectedness of the interval [a, b].
Assume in the contrary that [a, b) is not connected. Then, there are open sets U and V in
R such that

U ∩ V = ∅, U ∩ [a, b) 6= ∅, V ∩ [a, b) 6= ∅, [a, b) ⊆ U ∪ V.

We assume without loss of generality that a ∈ U (otherwise exchange the names of U , V ).
Consider the set

I = {s ∈ [a, b) | [a, s] ⊂ U}.

Let t = sup I. We consider three cases based on the value of t.
(1) Assume that t = a. As U is open there is δ > 0 such that [a− δ, a+ δ) ∈ U . Since

a < b, we may make δ smaller so that a+ δ < b. Therefore, [a, a+ δ/2] ⊂ [a, b), and hence
t > a. This contradiction shows that this case cannot occur.

(2) Assume that t = b. Because t is the supremum of I, for every s1 ∈ [a, b), there is
s > s1 such that s ∈ I. Hence, s1 ∈ [a, s] ⊂ U . This shows that [a, b) = [a, t) ⊂ U . Then,
V ∩ [a, b) = ∅, which is not possible.

(3) a < t < b. As in the previous case, we note that [a, t) ⊂ U . If t ∈ U , there is ε > 0
such that (t − ε, t + ε) ⊂ U and t + ε < b. This contradicts t = sup I. If t ∈ V , there is
ε′ > 0 such that (t− ε′, t+ ε′) ∈ V , which contradicts that U and V are disjoint.

In all possibilities for the value of t we reached a contradiction. Therefore, there cannot
be U and V satisfying the above properties.

(ii): This is similar to case (i); assume that b ∈ U , and consider the set

I = {s ∈ (a, b] | [s, b] ⊂ U},

let t = inf I, and repeat the same argument.

(iii) Suppose for contradiction (a, b) is not connected. Then, there are open sets U and
V such that

(a, b) ⊂ U ∪ V, U ∩ V = ∅, U ∩ (a, b) 6= ∅, V ∩ (a, b) 6= ∅.

Choose u ∈ U ∩ (a, b) and v ∈ V ∩ (a, b). Assume without loss of generality that u < v.
Now,

[u, v] ⊂ U ∪ V, U ∩ V = ∅, U ∩ [u, v] 6= ∅, V ∩ [u, v] 6= ∅.

These imply that [u, v] is disconnected. But in the lectures we have proved that any set of
the from [u, v] is connected.

Exercise 8.4. Show that the following metric spaces are path connected.

(i) the Euclidean space Rn, for any n ≥ 1,

(ii) the open ball B1(0) in (Rn,d2), for any n ≥ 2,

(iii) the annulus {(x, y) ∈ R2 | 1 ≤ ‖(x, y)‖ ≤ 2}.
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Hint: For items (i) and (ii), consider a straight line segment between any pair of points.
For item (iii), write an explicit formula for a curve spiralling from x to y, using the polar
coordinates.

Solution: (i): Let x and y be arbitrary elements in Rn. Consider the map f : [0, 1]→ Rn,
defined as

f(t) = (1− t)x+ ty, for t ∈ [0, 1].

We have f(0) = x and f(1) = y. We need to show that f is continuous. If x = y, then
f is a constant map, and hence is continuous. If x 6= y, for every ε > 0, we consider
δ = ε/‖x− y‖, and note that for every s and t in [0, 1] satisfying |s− t| < δ we have

‖f(s)− f(t)‖ = ‖((1− s)x+ sy)− ((1− t)x+ ty)‖
= |t− s|‖x− y‖

<
ε

‖x− y‖
‖x− y‖

= ε.

Thus, f is continuous. As x and y are arbitrary, we conclude that f is continuous.

(ii): Let x and y in B1(0) be arbitrary elements. We consider the map f : [0, 1] → R
defined as

f(t) = (1− t)x+ ty, for t ∈ [0, 1].

We note that for every t ∈ [0, 1], we have

‖f(t)‖ = ‖(1− t)x+ ty‖ ≤ (1− t)‖x‖+ t‖y‖ < (1− t) + t = 1.

This shows that for every t ∈ [0, 1], f(t) ∈ B1(0). In other words, f : [0, 1] → B1(0). We
already proved in part (i) that f is continuous. This shows that B1(0) is path connected.

(iii) Let x1 and x2 be arbitrary elements in

{z ∈ R2 | 1 ≤ ‖z‖ ≤ 2}.

There are θ1 ∈ [0, 2π) and θ2 ∈ [0, 2π) such that

x1 = ‖x1‖ (cos θ1, sin θ1), x2 = ‖x2‖ (cos θ2, sin θ2)

Let us consider the map f : [0, 1]→ R2, defined as

f(t) =
(

(1− t)‖x1‖+ t‖x2‖
)(

cos((1− t)θ1 + tθ2), sin((1− t)θ1 + tθ2)
)
.

We have f(0) = x1 and f(1) = x2. Since sin and cos are continuous functions, the map f
is continuous. We need to show that f is a map from [0, 1] to {z ∈ R2 | 1 ≤ ‖z‖ ≤ 2}. For
every t ∈ [0, 1], since x1 and x2 satisfy 1 ≤ ‖x1‖ ≤ 2 and 1 ≤ ‖x2‖ ≤ 2, we have

‖f(t)‖ = (1− t)‖x1‖+ t‖x2‖ ∈ [1, 2].

Exercise 8.5. Consider the set of all continuous functions f : [0, 1]→ R, that is C([0, 1]),
with the metric d1.
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(i) Show that the space (C([0, 1]), d1) is path connected.

(ii) Conclude that the space (C([0, 1]),d1) is connected.

Hint: For arbitrary f and g in C([0, 1]), define an explicit map φ : [0, 1] → C([0, 1])
defined as a linear combination of f and g. You need to show that every such linear
combination belongs to C([0, 1]), and the map Φ is continuous with respect to d1.

Solution: Let f and g be arbitrary elements in C([0, 1]). Consider the map Φ : [0, 1] →
C([0, 1]), defined as

Φ(t) = (1− t)f + tg.

Obviously, for every t ∈ [0, 1], (1 − t)f + tg is a continuous function on [0, 1]. Therefore,
Φ maps into C([0, 1]). We also have Φ(0) = f and Φ(1) = g. We need to show that Φ(t)
is continuous. If f = g (that is f(x) = g(x) for all x ∈ [0, 1]), then Φ is a constant map,
and hence it is continuous. So let us assume that f 6= g (there is x ∈ [0, 1] such that
f(x) 6= g(x)). For ε > 0, let δ = ε/ d1(f, g). For every s and t in [0, 1] with |s− t| < δ, we
have

d1

(
Φ(s),Φ(t)

)
=

∫ 1

0
|Φ(s)− Φ(t)| dx

=

∫ 1

0

∣∣((1− s)f + sg
)
−
(
(1− t)f + tg

)∣∣ dx
= |s− t|

∫ 1

0
|f − g| dx = |s− t| d1(f, g)

≤ ε

d1(f, g)
d1(f, g) = ε.

This shows that Φ is continuous on [0, 1].
Part (ii) of the problem follows from the theorem in the lectures that every path

connected metric space is connected.

Exercise 8.6.* In this exercise, we aim to show that a connected space may not be path
connected.

Consider the following subset of R2:

A = {(x, sin(1/x)) ∈ R2 | x > 0} ∪ {(x, y) ∈ R2 | x = 0, y ∈ [−1,+1]}.

That is, A is the union of the oscillating curve which is the graph of sin(1/x), and the
vertical line segment {0} × [−1,+1].

(i) show that the set A is connected.

Hint: first show that each of the vertical line segment and the graph of sin(1/x) are
connected. So the only way to disconnect A is to separate those two pieces by open
sets. However, any open set containing the straight line segment, will also contain
part of the graph.

(ii) show that the set A is not path connected.

Hint: You need to show that there is no path joining a point on the line segment to a
point on the graph.
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Solution: (i): In order to show that A is connected, by a theorem in the lectures, it is
enough to show that there is no continuous and surjective map from A to {0, 1}. To see
that, let f : A→ {0, 1} be a continuous map. We aim to show that f cannot be surjecitve.

Consider the sets

A1 = {(x, sin(1/x)) ∈ R2 | x > 0}, A2 = {(x, y) ∈ R2 | x = 0, y ∈ [−1,+1]}

The set A1 is connected. That is because, it is homeomorphic to the set (0,+∞), and the
set (0,+∞) is connected (the proof is similar to the arguments in Exercise 8.3-(iii)). Since
f : A1 → {0, 1} is continuous, and A1 is connected, by a theorem in the lectures, f cannot
be surjective. Thus, wither f(A1) = 0 or f(A1) = 1. Let us assume that f(A1) = 0 (the
other case is similar).

Let (0, y) be an arbitrary point in A2. There is a sequence of points (xn)n≥0 in (0,+∞)
such that (xn, sin(x−1n ))→ (0, y), as n→∞. Since f is continuous on A, we conclude that

f(0, y) = lim
n→∞

f (xn, sin(1/xn)) = lim
n→∞

0 = 0.

Since (0, y) in A2 was arbitrary, we conclude that f(A2) = 0. Combining with the previous
paragraph, we conclude that f(A) ≡ 0, thus, f cannot be surjective.

(ii) Assume in the contrary that A is path connected. There must be a continuous map

f : [0, 1]→ A

such that
f(0) = (0, 0), f(1) = (1, sin(1)).

Since f is continuous, and A2 is closed, I = f−1(A2) ⊂ [0, 1] is a closed set. Define
t = sup I. Since I is closed, t ∈ I. It follows that f(t) ∈ A2, and for all s ∈ (t, 1],
f(s) ∈ A1. In particular, t < 1. Below we aim to show that f cannot be continuous
at t, since its limit as x tends to t from the right hand side does not exist (due to the
oscillations).

Let us write the map f : [0, 1]→ A in its coordinates

f(x) = (f1(x), f2(x)),

for some continuous functions f1 : [0, 1] → R and f2 : [0, 1] → R. Since f2 is continuous,
for ε = 1/4, there is δ > 0 such that

∀s ∈ [t, t+ δ], |f2(s)− f2(t)| ≤ 1/4.

This implies that
f2([t, t+ δ]) 6= [−1,+1].

Since f1 is continuous on [t, t+ δ] and [t, t+ δ] is connected, f1([t, t+ δ]) is connected.
By a theorem in the lectures, f1([t, t + δ]) is an interval. On the other hand, by the first
paragraph, we have f(t+δ) ∈ A2, which implies that f1(t+δ) > 0. We also have f1(t) = 0.
Therefore,

[0, f1(t+ δ)] ⊂ f1([t, t+ δ]).

Let us choose k ∈ N such that[
1

2kπ − π/2
,

1

2kπ + π/2

]
⊆ [0, f1(t+ δ)].
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Then, by the previous inclusion, there is a set S ⊂ [t, t+ δ] such that

f1(S) =

[
1

2kπ − π/2
,

1

2kπ + π/2

]
.

This implies that f2(S) = [−1, 1]. However, this contradicts f2([t, t+ δ]) 6= [−1,+1].

Unseen Exercise. (unseen) The purpose of this exercise is to give a direct proof that a
path connected space is connected.

Let us assume that there is a metric space (X,d) which is path connected, but not
connected. By the definition of connected sets, there must be open sets U and V in X
such that X = U ∪ V , U ∩ V = ∅, U 6= ∅, and V 6= ∅.

Let us choose a point u ∈ U and a point v ∈ V (we can do this since U and V are not
empty.). Since X is path connected, there is a continuous map g : [0, 1] → X satisfying
g(0) = u and g(1) = v. Show that the sets

U ′ = g−1(U), V ′ = g−1(V ),

disconnect [0, 1].

Solution: Since g is continuous, both U ′ and V ′ are open sets in [0, 1] (pre-images of open
sets by a continuous map). As U ∪ V = X, U ′ ∪ V ′ = [0, 1]. As f(0) = u ∈ U , U ′ 6= ∅, and
as v = f(1) ∈ V , V ′ 6= ∅. Also, since U ∩ V = ∅, U ′ ∩ V ′ = ∅. These show that the metric
space ([0, 1],d1) is disconnected, where d1 is the induced metric from d1 on R.


