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Exercise 8.1. Let (X, d) be a metric space. Show that X is connected if and only if the
only subsets of X which are both open and closed are X and ().

Hint: In one direction, you have a pair of separating sets, and you can consider of the
open sets in the pair. In the other direction, consider the particular set and its complement.

Solution: First assume that X is connected. Let U be an arbitrary subset of X which
is both open and closed. We need to show that either U = X or U = (). Consider the
set V.= X\ U. Since U is closed in X, V is open in X. We also have U NV = (), and
UuUV = X. If both U and V are not empty, then U and V disconnect X, which contradicts
the assumption. Therefore, at least one of U and V is empty. This implies that either
U=0orU=X.

Now, assume that the only subsets of X which are both open and closed are X and 0.
Assume in the contrary that X is not connected. Then, there exist U,V C X such that U
and V are open in X, are not empty, are disjoint, and X = U U V. Therefore V = X \ U
is closed (complement of the open set U). These imply that V # X and V # (), which is
a contradiction.

Exercise 8.2. Show that in the Euclidean metric space (R!,d;), the set of rational num-
bers Q is disconnected.

Hint:pick an irrational number, and consider the set of rational numbers less than that
number, and the set of rational numbers larger than that set.

Solution: Consider the sets
U = (—o0,V?2) V = (V2,+00).
Then U and V are open in R, and we have
QcUuUV, UnV=0 U#D, V #0.
These show that U and V' disconnect Q.
Exercise 8.3.* Consider the Euclidean metric space (R,d;), and assume that a and b are
real numbers with a < b.

(i) Show that the interval [a, b) is connected.

Hint: This is a special case of the proof of the connectivity of [a, b]

(ii) Show that the interval (a,b] is connected.

Hint: Modify the proof of the thm showing that [a,b is connected; starting with b
instead of a, modify I, and take the infimum of I.
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(iii) Show that the interval (a,b) is connected.

Hint: Choose u € U N (a,b) and v € V N (a,b), and consider the interval [u,v] or
[v,u], depending on u < v or v < u.

Solution: This is a special case of the proof of the connectedness of the interval [a,b].
Assume in the contrary that [a, b) is not connected. Then, there are open sets U and V' in
R such that

unv=>0, UnNla,b)#0, VNlab)#0, [a,b)CUUV.

We assume without loss of generality that a € U (otherwise exchange the names of U, V).
Consider the set
I ={s€lab)]|]a,s] CU}.

Let t = sup I. We consider three cases based on the value of ¢.

(1) Assume that t = a. As U is open there is 6 > 0 such that [a — J,a + 0) € U. Since
a < b, we may make ¢ smaller so that a 4+ < b. Therefore, [a,a+ /2] C [a,b), and hence
t > a. This contradiction shows that this case cannot occur.

(2) Assume that t = b. Because t is the supremum of I, for every s; € [a,b), there is
s > s1 such that s € I. Hence, s; € [a,s] C U. This shows that [a,b) = [a,t) C U. Then,
V' N [a,b) = 0, which is not possible.

(3) a <t <b. As in the previous case, we note that [a,t) C U. If t € U, there is ¢ > 0
such that (t —e,t +¢) C U and t + € < b. This contradicts t = supI. If t € V| there is
€ > 0 such that (¢t — €', + ¢') € V, which contradicts that U and V are disjoint.

In all possibilities for the value of ¢t we reached a contradiction. Therefore, there cannot
be U and V satisfying the above properties.

(ii): This is similar to case (i); assume that b € U, and consider the set
I={se(ab]|][s,b] CU},

let ¢t = inf I, and repeat the same argument.

(iii) Suppose for contradiction (a,b) is not connected. Then, there are open sets U and
V' such that

(a,) CUUV, UNV =0, Un(a,b)#0, Vni(ab) #0.

Choose u € U N (a,b) and v € VN (a,b). Assume without loss of generality that v < v.
Now,

[u, 0] CUUV, UNV =0, UNu,v]#0, VNlu,v]#0.
These imply that [u,v] is disconnected. But in the lectures we have proved that any set of
the from [u,v] is connected.
Exercise 8.4. Show that the following metric spaces are path connected.
(i) the Euclidean space R", for any n > 1,
(ii) the open ball B;(0) in (R™,d2), for any n > 2,

(iii) the annulus {(x,y) € R? |1 < ||(z, )| < 2}.



Hint: Foritems (i) and (ii), consider a straight line segment between any pair of points.
For item (i), write an explicit formula for a curve spiralling from x to y, using the polar
coordinates.

Solution: (i): Let x and y be arbitrary elements in R”. Consider the map f : [0, 1] — R",
defined as
ft) =00 -tz + ty, for ¢t € [0, 1].

We have f(0) = 2 and f(1) = y. We need to show that f is continuous. If x = y, then
f is a constant map, and hence is continuous. If x # y, for every ¢ > 0, we consider
0 = ¢/||lx — y||, and note that for every s and ¢ in [0, 1] satisfying |s — ¢| < § we have

1£(s) = FOI = (1 = s)z + sy) = (1 = )z + ty)]|
= [t = sllz —yll

€
<g—llz—yll
Iz = yll
=e.
Thus, f is continuous. As x and y are arbitrary, we conclude that f is continuous.

(ii): Let x and y in B;(0) be arbitrary elements. We consider the map f : [0,1] — R
defined as
ft) =00 —t)z + ty, for ¢t € [0, 1].

We note that for every t € [0, 1], we have
If@OI =1 =)z +tyl| < @ =t)f=] +tyl <A —1)+t=1.

This shows that for every t € [0,1], f(t) € B1(0). In other words, f : [0,1] — B1(0). We
already proved in part (i) that f is continuous. This shows that B;(0) is path connected.

(iii) Let x1 and x5 be arbitrary elements in
(eR|1< ] <2).
There are 6 € [0,27) and 03 € [0,27) such that
x1 = ||z1]| (cosbq,sinby), x2 = ||x2]| (cos bz, sinby)

Let us consider the map f : [0,1] — R?, defined as

5t = (1= )llar]l + taa]) (cos((1 = )01 + 162, sin((1 — )61 +162) ).
We have f(0) = x; and f(1) = x2. Since sin and cos are continuous functions, the map f
is continuous. We need to show that f is a map from [0,1] to {z € R? | 1 < ||z|| < 2}. For

every t € [0,1], since z; and x5 satisfy 1 < [|z1|| <2 and 1 < ||| < 2, we have

IF@OI = (1= t)llza]l + tla]l € [1,2].

Exercise 8.5. Consider the set of all continuous functions f : [0, 1] — R, that is C(]0,1]),
with the metric dj.



(i) Show that the space (C([0,1]),d1) is path connected.
(ii) Conclude that the space (C([0,1]),d;) is connected.

Hint: For arbitrary f and g in C([0,1]), define an explicit map ¢ : [0,1] — C([0,1])
defined as a linear combination of f and g. You meed to show that every such linear
combination belongs to C([0,1]), and the map ® is continuous with respect to dj.

Solution: Let f and g be arbitrary elements in C(]0,1]). Consider the map & : [0,1] —
C(]0,1]), defined as
O(t) =(1—1t)f +tg.

Obviously, for every ¢t € [0,1], (1 —t)f + tg is a continuous function on [0, 1]. Therefore,
® maps into C([0,1]). We also have ®(0) = f and ®(1) = g. We need to show that ®(¢)
is continuous. If f = ¢ (that is f(z) = g(z) for all x € [0, 1]), then ® is a constant map,
and hence it is continuous. So let us assume that f # g (there is = € [0,1] such that
f(z) # g(x)). For e >0, let 6 =¢/di(f,g). For every s and ¢ in [0, 1] with |s — t| < J, we
have

1
dy (B(s), 8 (1)) = /0 B(s) — B(t)] da
1
:/0 [(L=s)f+sg)— (A—2t)f +tg)| dw

1
=|s—t|/0 f —gldz = |s — | ds(f.9)

€
< ——di(f,9) =€
dy (fa g) ’
This shows that ® is continuous on [0, 1].
Part (ii) of the problem follows from the theorem in the lectures that every path
connected metric space is connected.

Exercise 8.6.* In this exercise, we aim to show that a connected space may not be path
connected.
Consider the following subset of R?:

A= {(z,sin(1/z)) €eR? |z >0} U {(z,9) e R? |2 =0,y € [-1,+1]}.
That is, A is the union of the oscillating curve which is the graph of sin(1/x), and the
vertical line segment {0} x [—1,+1].

(i) show that the set A is connected.

Hint: first show that each of the vertical line segment and the graph of sin(1/x) are
connected. So the only way to disconnect A is to separate those two pieces by open
sets. However, any open set containing the straight line segment, will also contain
part of the graph.

(ii) show that the set A is not path connected.

Hint: You need to show that there is no path joining a point on the line segment to a
point on the graph.



Solution: (i): In order to show that A is connected, by a theorem in the lectures, it is

enough to show that there is no continuous and surjective map from A to {0,1}. To see

that, let f: A — {0, 1} be a continuous map. We aim to show that f cannot be surjecitve.
Consider the sets

Ay = {(z,sin(1/z)) € R* | 2 > 0}, Ay ={(z,y) €ER* |2 =0,y € [-1,+1]}

The set A; is connected. That is because, it is homeomorphic to the set (0, +00), and the
set (0, +00) is connected (the proof is similar to the arguments in Exercise 8.3-(iii)). Since
f: A1 — {0,1} is continuous, and A; is connected, by a theorem in the lectures, f cannot
be surjective. Thus, wither f(A;) =0 or f(A;) = 1. Let us assume that f(A;) = 0 (the
other case is similar).

Let (0,y) be an arbitrary point in As. There is a sequence of points (x,,),>0 in (0, +00)
such that (x,,sin(z,; 1)) — (0,y), as n — oo. Since f is continuous on A, we conclude that
f(0,y) = lim f (xy,sin(1/z,)) = lim 0=0.

n—oo

n—oo

Since (0,y) in Ag was arbitrary, we conclude that f(As) = 0. Combining with the previous
paragraph, we conclude that f(A) =0, thus, f cannot be surjective.

(ii) Assume in the contrary that A is path connected. There must be a continuous map
f:00,1] - A

such that
f(0)=(0,0),  f(1) = (1,sin(1)).
Since f is continuous, and Ay is closed, I = f~(Ay) C [0,1] is a closed set. Define
t = supl. Since I is closed, t € I. It follows that f(t) € As, and for all s € (¢,1],
f(s) € A;. In particular, ¢ < 1. Below we aim to show that f cannot be continuous
at t, since its limit as x tends to ¢ from the right hand side does not exist (due to the
oscillations).
Let us write the map f : [0,1] — A in its coordinates

f(z) = (fH(2), (),

for some continuous functions f! : [0,1] — R and f? : [0,1] — R. Since f? is continuous,
for e = 1/4, there is 6 > 0 such that

Vs € [t ¢+ ], f2(s) — F2(8)] < 1/4.
This implies that
f2([t7t + 5]) 7& [_17 +1]

Since f! is continuous on [t,t + 8] and [t, ¢ + 6] is connected, f1([t,t+ §]) is connected.
By a theorem in the lectures, f!([t,t + §]) is an interval. On the other hand, by the first
paragraph, we have f(t+§) € Ao, which implies that f1(t+§) > 0. We also have f!(¢) = 0.
Therefore,
[0, f1(t+6)]  f1([t,t + o).
Let us choose k € N such that

1 1
2k — /2" 2km + 7/2

C [0, f1(t+ ).



Then, by the previous inclusion, there is a set S C [t,t + d] such that

1 1

1 _
15 = 2k — /2" 2k + /2]

This implies that f2(S) = [~1,1]. However, this contradicts f2([t,t + d]) # [~1,+1].

Unseen Exercise. (unseen) The purpose of this exercise is to give a direct proof that a
path connected space is connected.

Let us assume that there is a metric space (X,d) which is path connected, but not
connected. By the definition of connected sets, there must be open sets U and V in X
such that X =U UV, UNV =0, U # 0, and V #£ 0.

Let us choose a point u € U and a point v € V' (we can do this since U and V are not
empty.). Since X is path connected, there is a continuous map g : [0,1] — X satisfying
9(0) = w and g(1) = v. Show that the sets

U'=gYU), V=gV,

disconnect [0, 1].

Solution: Since g is continuous, both U’ and V' are open sets in [0, 1] (pre-images of open
sets by a continuous map). AsUUV = X, U'UV' =10,1]. As f(0) =u e U, U' # (), and
asv=f(1) eV, V' #£0. Also, since UNV =0, U'NV’ = (. These show that the metric
space ([0,1],d;) is disconnected, where d; is the induced metric from d; on R.



