Problem Sheet 8	Analysis II
Davoud Cheraghi	Autumn 2021

Exercise 8.1. Let (X, d) be a metric space. Show that X is connected if and only if the only subsets of X which are both open and closed are X and \emptyset .

Exercise 8.2. Show that in the Euclidean metric space (\mathbb{R}^1, d_1) , the set of rational numbers \mathbb{Q} is disconnected.

Exercise 8.3.* Consider the Euclidean metric space (\mathbb{R}, d_1) , and assume that a and b are real numbers with a < b.

- (i) Show that the interval [a, b) is connected.
- (ii) Show that the interval (a, b] is connected.
- (iii) Show that the interval (a, b) is connected.

Exercise 8.4. Show that the following metric spaces are path connected.

- (i) the Euclidean space \mathbb{R}^n , for any $n \ge 1$,
- (ii) the open ball $B_1(0)$ in $(\mathbb{R}^n, \mathbf{d}_2)$, for any $n \ge 2$,
- (iii) the annulus $\{(x, y) \in \mathbb{R}^2 \mid 1 \le ||(x, y)|| \le 2\}.$

Exercise 8.5. Consider the set of all continuous functions $f : [0, 1] \to \mathbb{R}$, that is C([0, 1]), with the metric d_1 .

- (i) Show that the space $(C([0, 1]), d_1)$ is path connected.
- (ii) Conclude that the space $(C([0, 1]), d_1)$ is connected.

Exercise 8.6.* In this exercise, we aim to show that a connected space may not be path connected.

Consider the following subset of \mathbb{R}^2 :

$$A = \{ (x, \sin(1/x)) \in \mathbb{R}^2 \mid x > 0 \} \cup \{ (x, y) \in \mathbb{R}^2 \mid x = 0, y \in [-1, +1] \}.$$

That is, A is the union of the oscillating curve which is the graph of $\sin(1/x)$, and the vertical line segment $\{0\} \times [-1, +1]$.

- (i) show that the set A is connected.
- (ii) show that the set A is not path connected.

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with * are optional