

Exercise 9.1. Consider the metric space (\mathbb{R}, d_1) , and assume that a and b are real numbers with $a < b$. Show that all of the intervals $(a, b]$, $[a, b)$, $[a, +\infty)$, and $(-\infty, b]$ are not compact.

Hint: For each of those intervals, you need to present an open cover of the set such which does not have a finite sub-cover.

Solution: Consider the open cover

 $\mathcal{R} = \{(a+1/n, b+1) \mid n \in \mathbb{N}\}\$

for $(a, b]$. As we discussed in the examples in the lectures, there is no finite sub-cover of $\mathcal R$ for $(a, b]$. Thus, $(a, b]$ is not compact. Similarly, the open cover $\{(a - 1, b - 1/n) \mid n \in \mathbb{N}\}\$ for $[a, b]$ has no finite sub-cover.

The collection

$$
\{(a-1,n) \mid n \in \mathbb{N}\}\
$$

is an open cover for $[a, +\infty)$. There is no finite sub-cover of this cover for $[a, +\infty)$. Similarly, the open cover $\{(-n, b+1) \mid n \in \mathbb{N}\}\$ for $(-\infty, b]$ has no finite sub-cover.

Exercise 9.2. Show that if A and B are compact subsets of a metric space (X, d) , then $A \cup B$ is a compact set.

Hint: For an arbitrary open cover for $A \cup B$, there is a finite sub-cover for A, and a finite sub-cover for B. Consider the union of those finite sub-covers.

Solution: Let R be an open cover for $A \cup B$. Then, in particular, R is an open cover for A, and an open cover for B. Since A is compact, there is a finite subset $\mathcal{R}_A \subseteq \mathcal{R}$ which is a cover for A. Similarly, there is a finite subset $\mathcal{R}_B \subseteq \mathcal{R}$ which is a cover for B. Clearly, $\mathcal{R}_A \cup \mathcal{R}_B$ is a finite cover for $A \cup B$, which is a sub-cover of \mathcal{R} . Hence, $A \cup B$ is compact.

Exercise 9.3. Show that the ball

$$
\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}
$$

in the metric space (\mathbb{R}^2, d_2) is not compact.

Hint: consider an open cover of this set, by balls centred at $(0,0)$ and the radii tending to 1 from below.

Solution: For every $n \in \mathbb{N}$, consider the set

$$
U_n = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 - 1/n\},\
$$

and consider the collection

$$
\mathcal{R} = \{U_n \mid n \in \mathbb{N}\}.
$$

Clearly, this is a collection of open sets (balls in any metric space are open sets), which is a cover for the ball of radius 1 about $(0, 0)$; $B_1((0, 0))$. This cover has no finite sub-cover for $B_1((0,0))$. Assume in the contrary that there is a finite sub-cover $\{U_{n_k} \mid k=1,\ldots,m\}$ of R for $B_1((0,0))$. Let $p = \max_{1 \le k \le m} n_k$. The point (x, y) with $x^2 + y^2 = 1 - 1/(p+1)$ belongs to $B_1((0,0))$. But, that point does not belong to $\cup_{k=1}^m U_{n_k}$. This is a contradiction.

Please send any corrections to d.cheraghi@imperial.ac.uk

Questions marked with ∗ are optional

Exercise 9.4. Let (X, d) be a metric space, and A_1, A_2, \ldots, A_n be a finite number of bounded sets in X. Then $\cup_{i=1}^{n} A_i$ is a bounded set in X.

Hint: Consider the bounds M_i for the sets A_i , for $i = 1, ..., n$. From each i, choose a point $z_i \in A_i$, and add all the numbers M_i and $d(z_i, z_j)$, over all i and j.

Solution: For every $k = 1, 2, ..., n$, A_k is bounded. Thus, for every $k = 1, 2, ..., n$, there is a constant M_k such that for all x_k and y_k in A_k we have $d(x_k, y_k) \leq M_k$. If some A_k is empty, we can discard that set, since it does not make any difference in the union $\cup_{k=1}^{n} A_k$. So without loss of generality, we may assume that all A_k , for $k = 1, 2, \ldots, n$, are not empty. Thus, for each $k = 1, 2, ..., n$, we may choose a point $z_k \in A_k$. Define the number

$$
\hat{M} = \sum_{k=1}^{n} M_i + \sum_{i=1,j=1}^{i=n,j=n} d(z_i, z_j) \},\,
$$

where the second sum runs over all pairs (i, j) with i and j in $\{1, 2, \ldots, n\}$. This is a constant (finite) real number. We claim that the distance between any two points in $\bigcup_{k=1}^{n} A_k$ is bounded from above by \hat{M} .

Let x and y be arbitrary points in $\bigcup_{k=1}^{n} A_k$. If x and y belong to the same set A_k , then $d(x, y) \le M_k \le \tilde{M}$. Now, assume that $x \in A_i$ and $y \in A_j$ for some i and j in $\{1, 2, \ldots, n\}$. Then, by the triangle inequality,

$$
d(x,y) \le d(x,z_i) + d(z_i,y) \le d(x,z_i) + d(z_i,z_j) + d(z_j,y_i) \le M_i + d(z_i,z_j) + M_j \le \hat{M}.
$$

Exercise 9.5. Let (X, d) be a non-empty metric space, and let $Z \subseteq X$. Show that Z is bounded if and only if there is $x \in X$ and $r \in \mathbb{R}$ such that $Z \subseteq B_r(x)$.

Hint:If Z is bounded, choose a bound M, and consider the ball $B_M(x)$, for an arbitrary $x \in A$. If A is contained in a ball of radius R, work with the bound 2R for the set A.

Solution: First assume that Z is bounded. This means that there is $M > 0$ such that for any x and y in Z, $d(x, y) < M$. Since Z is not empty, we may choose $x \in Z$, and consider the ball $B_M(x)$. Then, by the definition of the ball, we have $Z \subseteq B_M(x)$.

Now assume that are $x \in X$ and $r > 0$ such that $Z \subseteq B_r(x)$. Then by the definition of $B_r(x)$, for any $y \in Z$, $d(y, x) < r$. If s and t in Z are arbitrary points, then by triangle inequality, we have $d(s, t) \leq d(s, x) + d(x, t) < 2r$. Therefore, Z is bounded.

Exercise 9.6. Consider the set R with the discrete metric d_{disc} . The set $(0, 1)$ is closed and bounded in $(\mathbb{R}, d_{\text{disc}})$, but it is not compact.

Hint: Obviously, 1 provides a bound for the distance between any two points in $(0, 1)$. Use that any set in $\mathbb R$ with respect to the discrete metric is open, so any set is also closed (being the complement of some set in \mathbb{R}).

Solution: Recall that in the metric space $(\mathbb{R}, d_{\text{disc}})$, every set is open. This, implies that every set is also closed (being the complement of an open set). Also, for every x and y in R we have $d_{disc}(x, y) \leq 1$. Thus, R is bounded in the metric d_{disc} .

For every $x \in \mathbb{R}$, the set $\{x\}$ is open. Thus,

$$
\mathcal{R} = \{ \{x\} \mid x \in (0,1) \}
$$

is an (uncountable) open cover for $(0, 1)$. Obviously, it does not have a finite sub-cover for $(0, 1)$.

Exercise 9.7. Let (X, d) be a metric space, and assume that V_n , for $n \geq 1$, be a nest of non-empty closed sets in X .

- (i) Show that if X is compact, then $\cap_{n>1}V_n$ is not empty.
- (ii) Give an example of a nest of non-empty closed sets V_n , for $n \geq 1$, in a metric space such that $\cap_{n\geq 1}V_n$ is empty.

Hint: If the intersection is empty, then we may consider the cover of X by the sets $X \setminus V_n$, for $n \geq 1$, and drive a contradiction. For the second part, think about closed sets in (\mathbb{R}, d_1) .

Solution: (i) Assume in the contrary that $\cap_{n\geq 1}V_n = \emptyset$. Consider the collection

$$
\mathcal{R} = \{ X \setminus V_n \mid n \in \mathbb{N} \}.
$$

Since each V_n is a closed set, each $X \backslash V_n$ is an open set. Thus, R is a collection of open sets. We claim that R is a cover for X. To see this, let $x \in X$ be arbitrary. Since $\cap_{n \in \mathbb{N}} V_n = \emptyset$, there is $n_0 \in \mathbb{N}$ such that $x \notin V_{n_0}$. This implies that $x \in X \setminus V_{n_0}$, and hence is covered by an element of R.

Since X is compact, there must be a finite sub-cover of R for X. Thus, there is $m \in \mathbb{N}$ such that

$$
X\subseteq\bigcup_{n=1}^m(X\setminus V_n).
$$

Because $V_1 \supseteq V_2 \supseteq V_3 \supseteq \ldots$, we have $(X \setminus V_1) \subseteq (X \setminus V_2) \subseteq (X \setminus V_3) \subseteq \ldots$. Therefore, by the above equation

$$
X\subseteq X\setminus V_m.
$$

This implies that $V_m = \emptyset$, which contradicts the hypothesis in the exercise.

(ii) For example, the sets $V_n = [n, +\infty)$, for $n = 1, 2, \ldots$ are a nest of closed sets in the metric space (\mathbb{R}, d_1) . We have $\cap_{n\geq 1}V_n = \emptyset$.

Exercise 9.8. Show that if a metric space is sequentially compact, then it is bounded.

Hint: If a set is not bounded, there are pairs of points z_n and w_n with $d(z_n, w_n) \ge$ n. Think about what happens if $(z_n)_{n\geq 1}$ and $(w_n)_{n\geq 1}$ converge to some points z and w, respectively. You will need to identify a subsequence, so that both sequences converge along that subsequence.

Solution: Assume in the contrary that there is a sequentially compact metric space which is not bounded. Because X is not bounded, for every $n \in \mathbb{N}$, we may choose x_n and y_n in X such that $d(x_n, y_n) \geq n$.

Since X is sequentially compact, there is a subsequence of $(x_n)_{n\geq 1}$, say $(x_{n_k})_{k\geq 1}$, which converges to some point x in X. Now consider the sequence $(y_{n_k})_{k\geq 1}$ in X. Since X is sequentially compact, there is a subsequence of $(y_{n_k})_{k\geq 1}$, say $(y_{m_i})_{i\geq 1}$, which converges to some y in X. Note that, since $(y_{m_i})_{i\geq 1}$ is a subsequence of $(y_{n_k})_{k\geq 1}$, the sequence $(x_{m_i})_{i\geq 1}$ is a subsequence of $(x_{n_k})_{k\geq 1}$. In particular, $(x_{m_i})_{i\geq 1}$ converges to x and $(y_{m_i})_{i\geq 1}$ converges to y.

Since $(x_{m_i})_{i\geq 1}$ converges to x, for $\epsilon = 1$ there is $n_x \in \mathbb{N}$ such that for all $i \geq n_x$ we have $d(x_{m_i}, x) \leq 1$. Similarly, since $(y_{m_i})_{i \geq 1}$ converges to y, for $\epsilon = 1$ there is $n_y \in \mathbb{N}$ such that for all $i \geq n_y$ we have $d(y_{m_i}, y) \leq 1$. Then, for all $i \geq \max\{n_x, n_y\}$ we have

 $d(x_{m_i}, y_{m_i}) \le d(x_{m_i}, x) + d(x, y) + d(y, y_{m_i}) \le 1 + d(x, y) + 1 = 2 + d(x, y).$

This contradicts $d(x_{m_i}, y_{m_i}) \geq m_i$, when m_i is very large.

Exercise 9.9.* Let (X, d) be a sequentially compact metric space. Show that X is separable, that is, there is a countable dense set in X .

Hint: Fix an arbitrary $n \in \mathbb{N}$. Consider the open cover $\mathcal{R}_n = \{B_{1/n}(x) \mid x \in X\}$. Use the sequential compactness of X to conclude that there must be a finite sub-cover of \mathcal{R}_n for X. Let A_n be the centres of the balls in that finite sub-cover of \mathcal{R}_n . Consider $A = \bigcup_{n \geq 1} A_n$, and show that A is countable and dense in X.

Solution: Fix an arbitrary $n \in \mathbb{N}$. The collection

$$
\mathcal{R}_n = \{ B_{1/n}(x) \mid x \in X \}
$$

is an open cover for X. Thus, by the compactness of X, there is a finite set $A_n \subset X$ such that

$$
X \subseteq \bigcup_{x \in A_n} B_{1/n}(x).
$$

Define $A = \bigcup_{n>1} A_n$. Since each A_n is a finite set, A is countable (it is either finite, or in a bijection with $\mathbb N$). Below we show that A is dense in X.

Let $y \in X$ and $\epsilon > 0$ be arbitrary. There is $n \in \mathbb{N}$ such that $1/n < \epsilon$. Since $X \subseteq$ $\bigcup_{x\in A_n}B_{1/n}(x)$, there is $x\in A_n$ such that $y\in B_{1/n}(x)$. Thus, $x\in A$, and $d(x, y) \leq 1/n < \epsilon$. Since $y \in X$ and $\epsilon > 0$ were arbitrary, we conclude that A is dense in X.

Exercise 9.10.* Let (X, d) be a sequentially compact metric space, and \mathcal{R} be an open cover for X. Show that there is a countable sub-cover of $\mathcal R$ for X.

Hint: You can prove this statement in two steps. Step 1: Show that there is $n \in \mathbb{N}$ such that for every $x \in X$, $B_{1/n}(x)$ is contained in some element of R (assume that such n does not exist, so for every $n \in \mathbb{N}$ there is x_n such that $B_{1/n}(x_n)$ is not contained in any ball. Extract a subsequence and see what happens at the limit of that subsequence,). Step 2: By the previous exercise, there is a countable dense set $\{y_1, y_2, y_3, \ldots\}$ in X. Let n be the number from Step 1. For each $i \in \mathbb{N}$, $B_{1/n}(y_i)$ is contained in some element $V_i \in \mathcal{R}$. Show that the collection $\{V_i \mid i \in \mathbb{N}\}\$ is a countable sub-cover of R for X.

Solution: First we show that there is $n \in \mathbb{N}$ such that for every $x \in X$, there is $V \in \mathcal{R}$ such that $B_{1/n}(x) \subseteq V$. Assume in the contrary that such n does not exist. Then, for every $n \in \mathbb{N}$, there is $x_n \in X$ such that $B_{1/n}(x_n)$ is not contained in any set in R. Because X is sequentially compact, there is a subsequence $(x_{n_k})_{k\geq 1}$ of $(x_n)_{n\geq 1}$ such that $(x_{n_k})_{k\geq 1}$ converges to some $x \in X$. Since R is an open cover for X, there is an open set $V \in \mathcal{R}$ such that $x \in V$. Since V is open, there is $\delta > 0$ such that $B_{\delta}(x) \subset V$. Let us choose n_k large enough so that $d(x, x_{n_k}) < \delta/2$ and $1/n_k < \delta/2$. This implies that

$$
B_{1/n_k}(x_{n_k}) \subseteq B_{\delta}(x) \subseteq V.
$$

Thus, $B_{1/n_k}(x_{n_k})$ is contained in some element of \mathcal{R} , which is a contradiction.

Let $n \in \mathbb{N}$ be the number satisfying the property in the above paragraph. We showed in the previous exercise that there is a countable dense set of points in X, say $A = \{y_1, y_2, \ldots\}$. By the previous paragraph, for every $i \geq 1$, there is $V_i \in \mathcal{R}$ such that $B_{1/n}(y_i) \subseteq V_i$. Obviously, $\mathcal{R}' = \{V_i \mid i \in \mathbb{N}\}\$ is a sub-cover of \mathcal{R} , and is countable. Moreover, since A is dense in X, for any $x \in X$ we can find $y_k \in A$ such that $x \in B_{1/n}(y_k) \subseteq V_k$. This shows that \mathcal{R}' is a cover for X.

Exercise 9.11. Let (X, d) be a compact metric space, and assume that $f : X \to X$ is a continuous map such that for all $x \in X$, we have $f(x) \neq x$. Show that there is $\delta > 0$ such that for all $x \in X$, we have $d(x, f(x)) \ge \delta$.

Hint: Work with the map $x \mapsto d(x, f(x))$ on the set X, and think about if this map is continuous, and what values it may take.

Solution: Define the map $h: X \to \mathbb{R}$ as

$$
h(x) = d(x, f(x)).
$$

First we show that h is a continuous map on X. By exercise 5.8-(ii), for arbitrary x and y in X , we have

$$
|h(x) - h(y)| = |d(x, f(x)) - d(y, f(y))| \le d(x, y) + d(f(x), f(y)).
$$

Fix an arbitrary $x \in X$. To see that h is continuous at x, fix an arbitrary $\epsilon > 0$. Because f is continuous at x, there is $\delta' > 0$ such that for every $y \in X$ satisfying $d(x, y) < \delta'$ we have $d(f(x), f(y)) < \epsilon/2$. Let $\delta = \min{\delta', \epsilon/2}$. Then, for every $y \in X$ satisfying $d(x, y) < \delta$, by the above inequality we have

$$
|h(x) - h(y)| \le d(x, y) + d(f(x), f(y)) < \delta + \epsilon/2 \le \epsilon/2 + \epsilon/2 = \epsilon.
$$

By a theorem in the lectures, every continuous function on a compact set has a minimum, and its minimum is realised at some point in the domain of the function. Thus, there is $x_0 \in X$ such that h realises its minimum at x_0 . That is, for all $x \in X$ we have $h(x) \geq h(x_0)$. However, by the assumption in the exercise $h(x_0) > 0$. We can define $\delta = h(x_0).$

Unseen Exercise. Prove that if $X \subset \mathbb{R}$ is not compact, then there is a continuous map $f: X \to \mathbb{R}$ which is not bounded.

Hint: Consider two cases where X is not bounded, and X is not closed.

Solution: If $X \subseteq \mathbb{R}$ is not compact, then by the Heine-Borel theorem, either X is not bounded, or X is not closed. We show that in both of those cases such a continuous function f exists.

First assume that X is not bounded. Since the empty set is bounded, X is not empty. Then, we may choose a point $x \in X$. Define the map $f : X \to \mathbb{R}$ as $f(y) = d(y, x)$. Then, f is continuous on X, since for every y and z in X, we have

$$
|f(y) - f(z)| = |d(y, x) - d(z, x)| \le d(y, z).
$$

Since X is not bounded, for every $n \in N$, X is not contained in $B_n(x)$. This implies that f is not bounded.

Now assume that X is not closed. Therefore, there is a sequence of points $(x_n)_{n\geq 1}$ in X which converges to some $x \in \mathbb{R}$, but $x \notin X$. Define $f : X \to \mathbb{R}$ as

$$
f(y) = \frac{1}{d(y, x)}.
$$

The map f is continuous, since it is the composition of the continuous maps $y \mapsto d(y, x)$ and the map $t \mapsto 1/t$. But, f is not bounded from above, since $f(x_n) = 1/d(x_n, x) \to \infty$ as $n \to \infty$.