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Exercise 9.1. Consider the metric space (R,d1), and assume that a and b are real numbers
with a < b. Show that all of the intervals (a, b], [a, b), [a,+∞), and (−∞, b] are not
compact.

Hint: For each of those intervals, you need to present an open cover of the set such
which does not have a finite sub-cover.

Solution: Consider the open cover

R = {(a+ 1/n, b+ 1) | n ∈ N}

for (a, b]. As we discussed in the examples in the lectures, there is no finite sub-cover of R
for (a, b]. Thus, (a, b] is not compact. Similarly, the open cover {(a− 1, b− 1/n) | n ∈ N}
for [a, b) has no finite sub-cover.

The collection
{(a− 1, n) | n ∈ N}

is an open cover for [a,+∞). There is no finite sub-cover of this cover for [a,+∞). Similarly,
the open cover {(−n, b+ 1) | n ∈ N} for (−∞, b] has no finite sub-cover.

Exercise 9.2. Show that if A and B are compact subsets of a metric space (X,d), then
A ∪B is a compact set.

Hint: For an arbitrary open cover for A ∪ B, there is a finite sub-cover for A, and a
finite sub-cover for B. Consider the union of those finite sub-covers.

Solution: Let R be an open cover for A ∪B. Then, in particular, R is an open cover for
A, and an open cover for B. Since A is compact, there is a finite subset RA ⊆ R which is
a cover for A. Similarly, there is a finite subset RB ⊆ R which is a cover for B. Clearly,
RA ∪RB is a finite cover for A ∪B, which is a sub-cover of R. Hence, A ∪B is compact.

Exercise 9.3. Show that the ball

{(x, y) ∈ R2 | x2 + y2 < 1}

in the metric space (R2,d2) is not compact.
Hint: consider an open cover of this set, by balls centred at (0, 0) and the radii tending

to 1 from below.

Solution: For every n ∈ N, consider the set

Un = {(x, y) ∈ R2 | x2 + y2 < 1− 1/n},

and consider the collection
R = {Un | n ∈ N}.

Clearly, this is a collection of open sets (balls in any metric space are open sets), which is
a cover for the ball of radius 1 about (0, 0); B1((0, 0)). This cover has no finite sub-cover
for B1((0, 0)). Assume in the contrary that there is a finite sub-cover {Unk

| k = 1, . . . ,m}
of R for B1((0, 0)). Let p = max1≤k≤m nk. The point (x, y) with x2 + y2 = 1− 1/(p+ 1)
belongs to B1((0, 0)). But, that point does not belong to ∪mk=1Unk

. This is a contradiction.

Please send any corrections to d.cheraghi@imperial.ac.uk
Questions marked with ∗ are optional
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Exercise 9.4. Let (X,d) be a metric space, and A1, A2, . . . , An be a finite number of
bounded sets in X. Then ∪ni=1Ai is a bounded set in X.

Hint: Consider the bounds Mi for the sets Ai, for i = 1, . . . , n. From each i, choose a
point zi ∈ Ai, and add all the numbers Mi and d(zi, zj), over all i and j.

Solution: For every k = 1, 2, . . . , n, Ak is bounded. Thus, for every k = 1, 2, . . . , n, there
is a constant Mk such that for all xk and yk in Ak we have d(xk, yk) ≤Mk. If some Ak is
empty, we can discard that set, since it does not make any difference in the union ∪nk=1Ak.
So without loss of generality, we may assume that all Ak, for k = 1, 2, . . . , n, are not empty.
Thus, for each k = 1, 2, . . . , n, we may choose a point zk ∈ Ak. Define the number

M̂ =
n∑
k=1

Mi +

i=n,j=n∑
i=1,j=1

d(zi, zj)},

where the second sum runs over all pairs (i, j) with i and j in {1, 2, . . . , n}. This is a
constant (finite) real number. We claim that the distance between any two points in
∪nk=1Ak is bounded from above by M̂ .

Let x and y be arbitrary points in ∪nk=1Ak. If x and y belong to the same set Ak, then
d(x, y) ≤Mk ≤ M̂ . Now, assume that x ∈ Ai and y ∈ Aj for some i and j in {1, 2, . . . , n}.
Then, by the triangle inequality,

d(x, y) ≤ d(x, zi) + d(zi, y) ≤ d(x, zi) + d(zi, zj) + d(zj , yi) ≤Mi + d(zi, zj) +Mj ≤ M̂.

Exercise 9.5. Let (X,d) be a non-empty metric space, and let Z ⊆ X. Show that Z is
bounded if and only if there is x ∈ X and r ∈ R such that Z ⊆ Br(x).

Hint:If Z is bounded, choose a bound M , and consider the ball BM (x), for an arbitrary
x ∈ A. If A is contained in a ball of radius R, work with the bound 2R for the set A.

Solution: First assume that Z is bounded. This means that there is M > 0 such that for
any x and y in Z, d(x, y) < M . Since Z is not empty, we may choose x ∈ Z, and consider
the ball BM (x). Then, by the definition of the ball, we have Z ⊆ BM (x).

Now assume that are x ∈ X and r > 0 such that Z ⊆ Br(x). Then by the definition
of Br(x), for any y ∈ Z, d(y, x) < r. If s and t in Z are arbitrary points, then by triangle
inequality, we have d(s, t) ≤ d(s, x) + d(x, t) < 2r. Therefore, Z is bounded.

Exercise 9.6. Consider the set R with the discrete metric ddisc. The set (0, 1) is closed
and bounded in (R, ddisc), but it is not compact.

Hint: Obviously, 1 provides a bound for the distance between any two points in (0, 1).
Use that any set in R with respect to the discrete metric is open, so any set is also closed
(being the complement of some set in R).

Solution: Recall that in the metric space (R,ddisc), every set is open. This, implies that
every set is also closed (being the complement of an open set). Also, for every x and y in
R we have ddisc(x, y) ≤ 1. Thus, R is bounded in the metric ddisc.

For every x ∈ R, the set {x} is open. Thus,

R = {{x} | x ∈ (0, 1)}

is an (uncountable) open cover for (0, 1). Obviously, it does not have a finite sub-cover for
(0, 1).
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Exercise 9.7. Let (X,d) be a metric space, and assume that Vn, for n ≥ 1, be a nest of
non-empty closed sets in X.

(i) Show that if X is compact, then ∩n≥1Vn is not empty.

(ii) Give an example of a nest of non-empty closed sets Vn, for n ≥ 1, in a metric space
such that ∩n≥1Vn is empty.

Hint: If the intersection is empty, then we may consider the cover of X by the sets
X \ Vn, for n ≥ 1, and drive a contradiction. For the second part, think about closed sets
in (R,d1).

Solution: (i) Assume in the contrary that ∩n≥1Vn = ∅. Consider the collection

R = {X \ Vn | n ∈ N}.

Since each Vn is a closed set, each X\Vn is an open set. Thus, R is a collection of open sets.
We claim that R is a cover for X. To see this, let x ∈ X be arbitrary. Since ∩n∈NVn = ∅,
there is n0 ∈ N such that x /∈ Vn0 . This implies that x ∈ X \ Vn0 , and hence is covered by
an element of R.

Since X is compact, there must be a finite sub-cover of R for X. Thus, there is m ∈ N
such that

X ⊆
m⋃
n=1

(X \ Vn).

Because V1 ⊇ V2 ⊇ V3 ⊇ . . . , we have (X \ V1) ⊆ (X \ V2) ⊆ (X \ V3) ⊆ . . . . Therefore, by
the above equation

X ⊆ X \ Vm.

This implies that Vm = ∅, which contradicts the hypothesis in the exercise.

(ii) For example, the sets Vn = [n,+∞), for n = 1, 2, . . . are a nest of closed sets in the
metric space (R,d1). We have ∩n≥1Vn = ∅.

Exercise 9.8. Show that if a metric space is sequentially compact, then it is bounded.
Hint: If a set is not bounded, there are pairs of points zn and wn with d(zn, wn) ≥

n. Think about what happens if (zn)n≥1 and (wn)n≥1 converge to some points z and w,
respectively. You will need to identify a subsequence, so that both sequences converge along
that subsequence.

Solution: Assume in the contrary that there is a sequentially compact metric space which
is not bounded. Because X is not bounded, for every n ∈ N, we may choose xn and yn in
X such that d(xn, yn) ≥ n.

Since X is sequentially compact, there is a subsequence of (xn)n≥1, say (xnk
)k≥1, which

converges to some point x in X. Now consider the sequence (ynk
)k≥1 in X. Since X is

sequentially compact, there is a subsequence of (ynk
)k≥1, say (ymi)i≥1, which converges to

some y in X. Note that, since (ymi)i≥1 is a subsequence of (ynk
)k≥1, the sequence (xmi)i≥1

is a subsequence of (xnk
)k≥1. In particular, (xmi)i≥1 converges to x and (ymi)i≥1 converges

to y.
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Since (xmi)i≥1 converges to x, for ε = 1 there is nx ∈ N such that for all i ≥ nx we
have d(xmi , x) ≤ 1. Similarly, since (ymi)i≥1 converges to y, for ε = 1 there is ny ∈ N such
that for all i ≥ ny we have d(ymi , y) ≤ 1. Then, for all i ≥ max{nx, ny} we have

d(xmi , ymi) ≤ d(xmi , x) + d(x, y) + d(y, ymi) ≤ 1 + d(x, y) + 1 = 2 + d(x, y).

This contradicts d(xmi , ymi) ≥ mi, when mi is very large.

Exercise 9.9.* Let (X,d) be a sequentially compact metric space. Show that X is sepa-
rable, that is, there is a countable dense set in X.

Hint: Fix an arbitrary n ∈ N. Consider the open cover Rn = {B1/n(x) | x ∈ X}. Use
the sequential compactness of X to conclude that there must be a finite sub-cover of Rn for
X. Let An be the centres of the balls in that finite sub-cover of Rn. Consider A = ∪n≥1An,
and show that A is countable and dense in X.

Solution: Fix an arbitrary n ∈ N. The collection

Rn = {B1/n(x) | x ∈ X}

is an open cover for X. Thus, by the compactness of X, there is a finite set An ⊂ X such
that

X ⊆
⋃
x∈An

B1/n(x).

Define A = ∪n≥1An. Since each An is a finite set, A is countable (it is either finite, or
in a bijection with N). Below we show that A is dense in X.

Let y ∈ X and ε > 0 be arbitrary. There is n ∈ N such that 1/n < ε. Since X ⊆
∪x∈AnB1/n(x), there is x ∈ An such that y ∈ B1/n(x). Thus, x ∈ A, and d(x, y) ≤ 1/n < ε.
Since y ∈ X and ε > 0 were arbitrary, we conclude that A is dense in X.

Exercise 9.10.* Let (X,d) be a sequentially compact metric space, and R be an open
cover for X. Show that there is a countable sub-cover of R for X.

Hint: You can prove this statement in two steps. Step 1: Show that there is n ∈ N such
that for every x ∈ X, B1/n(x) is contained in some element of R (assume that such n does
not exist, so for every n ∈ N there is xn such that B1/n(xn) is not contained in any ball.
Extract a subsequence and see what happens at the limit of that subsequence, .... ). Step 2:
By the previous exercise, there is a countable dense set {y1, y2, y3, . . . } in X. Let n be the
number from Step 1. For each i ∈ N, B1/n(yi) is contained in some element Vi ∈ R. Show
that the collection {Vi | i ∈ N} is a countable sub-cover of R for X.

Solution: First we show that there is n ∈ N such that for every x ∈ X, there is V ∈ R
such that B1/n(x) ⊆ V . Assume in the contrary that such n does not exist. Then, for
every n ∈ N, there is xn ∈ X such that B1/n(xn) is not contained in any set in R. Because
X is sequentially compact, there is a subsequence (xnk

)k≥1 of (xn)n≥1 such that (xnk
)k≥1

converges to some x ∈ X. Since R is an open cover for X, there is an open set V ∈ R
such that x ∈ V . Since V is open, there is δ > 0 such that Bδ(x) ⊂ V . Let us choose nk
large enough so that d(x, xnk

) < δ/2 and 1/nk < δ/2. This implies that

B1/nk
(xnk

) ⊆ Bδ(x) ⊆ V.
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Thus, B1/nk
(xnk

) is contained in some element of R, which is a contradiction.
Let n ∈ N be the number satisfying the property in the above paragraph. We showed in

the previous exercise that there is a countable dense set of points inX, sayA = {y1, y2, . . . }.
By the previous paragraph, for every i ≥ 1, there is Vi ∈ R such that B1/n(yi) ⊆ Vi.
Obviously, R′ = {Vi | i ∈ N} is a sub-cover of R, and is countable. Moreover, since A is
dense in X, for any x ∈ X we can find yk ∈ A such that x ∈ B1/n(yk) ⊆ Vk. This shows
that R′ is a cover for X.

Exercise 9.11. Let (X,d) be a compact metric space, and assume that f : X → X is a
continuous map such that for all x ∈ X, we have f(x) 6= x. Show that there is δ > 0 such
that for all x ∈ X, we have d(x, f(x)) ≥ δ.

Hint: Work with the map x 7→ d(x, f(x)) on the set X, and think about if this map is
continuous, and what values it may take.

Solution: Define the map h : X → R as

h(x) = d(x, f(x)).

First we show that h is a continuous map on X. By exercise 5.8-(ii), for arbitrary x and
y in X, we have

|h(x)− h(y)| = |d(x, f(x))− d(y, f(y))| ≤ d(x, y) + d(f(x), f(y)).

Fix an arbitrary x ∈ X. To see that h is continuous at x, fix an arbitrary ε > 0. Because f
is continuous at x, there is δ′ > 0 such that for every y ∈ X satisfying d(x, y) < δ′ we have
d(f(x), f(y)) < ε/2. Let δ = min{δ′, ε/2}. Then, for every y ∈ X satisfying d(x, y) < δ,
by the above inequality we have

|h(x)− h(y)| ≤ d(x, y) + d(f(x), f(y)) < δ + ε/2 ≤ ε/2 + ε/2 = ε.

By a theorem in the lectures, every continuous function on a compact set has a min-
imum, and its minimum is realised at some point in the domain of the function. Thus,
there is x0 ∈ X such that h realises its minimum at x0. That is, for all x ∈ X we have
h(x) ≥ h(x0). However, by the assumption in the exercise h(x0) > 0. We can define
δ = h(x0).

Unseen Exercise. Prove that if X ⊂ R is not compact, then there is a continuous map
f : X → R which is not bounded.

Hint: Consider two cases where X is not bounded, and X is not closed.

Solution: If X ⊆ R is not compact, then by the Heine-Borel theorem, either X is not
bounded, or X is not closed. We show that in both of those cases such a continuous
function f exists.

First assume that X is not bounded. Since the empty set is bounded, X is not empty.
Then, we may choose a point x ∈ X. Define the map f : X → R as f(y) = d(y, x). Then,
f is continuous on X, since for every y and z in X, we have

|f(y)− f(z)| = |d(y, x)− d(z, x)| ≤ d(y, z).

Since X is not bounded, for every n ∈ N , X is not contained in Bn(x). This implies that
f is not bounded.
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Now assume that X is not closed. Therefore, there is a sequence of points (xn)n≥1 in
X which converges to some x ∈ R, but x /∈ X. Define f : X → R as

f(y) =
1

d(y, x)
.

The map f is continuous, since it is the composition of the continuous maps y 7→ d(y, x)
and the map t 7→ 1/t. But, f is not bounded from above, since f(xn) = 1/ d(xn, x)→∞
as n→∞.


