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Exercise 9.1. Consider the metric space (R, dy), and assume that a and b are real numbers
with a < b. Show that all of the intervals (a,b], [a,b), [a,+0c0), and (—o0,b] are not
compact.

Hint: For each of those intervals, you need to present an open cover of the set such
which does not have a finite sub-cover.

Solution: Consider the open cover
R={(a+1/n,b+1)|neN}

for (a,b]. As we discussed in the examples in the lectures, there is no finite sub-cover of R
for (a,b]. Thus, (a,b] is not compact. Similarly, the open cover {(a —1,b —1/n) | n € N}
for [a,b) has no finite sub-cover.

The collection

{(a—1,n) | n € N}

is an open cover for [a, +00). There is no finite sub-cover of this cover for [a, +00). Similarly,
the open cover {(—n,b+ 1) | n € N} for (—oo, b] has no finite sub-cover.

Exercise 9.2. Show that if A and B are compact subsets of a metric space (X, d), then
AU B is a compact set.

Hint: For an arbitrary open cover for AU B, there is a finite sub-cover for A, and a
finite sub-cover for B. Consider the union of those finite sub-covers.

Solution: Let R be an open cover for AU B. Then, in particular, R is an open cover for
A, and an open cover for B. Since A is compact, there is a finite subset R 4 C R which is
a cover for A. Similarly, there is a finite subset Rp C R which is a cover for B. Clearly,
R4 UTRp is a finite cover for AU B, which is a sub-cover of R. Hence, AU B is compact.

Exercise 9.3. Show that the ball
{(z,y) eR* | 2* +¢° < 1}

in the metric space (R?,dz) is not compact.
Hint: consider an open cover of this set, by balls centred at (0,0) and the radii tending
to 1 from below.

Solution: For every n € N, consider the set
Un={(z,y) e R* | 2” +y* <1—1/n},

and consider the collection

R ={U, | n e N}
Clearly, this is a collection of open sets (balls in any metric space are open sets), which is
a cover for the ball of radius 1 about (0,0); B1((0,0)). This cover has no finite sub-cover
for B1((0,0)). Assume in the contrary that there is a finite sub-cover {U,, | k=1,...,m}
of R for B1((0,0)). Let p = maxj<j<, ng. The point (z,y) with 22 +y?> =1—-1/(p+ 1)
belongs to B1((0,0)). But, that point does not belong to Uj"_,U,, . This is a contradiction.

Please send any corrections to d.cheraghi@imperial.ac.uk
Questions marked with * are optional



Exercise 9.4. Let (X,d) be a metric space, and Ay, Ay, ..., A, be a finite number of
bounded sets in X. Then U}_; A; is a bounded set in X.

Hint: Consider the bounds M; for the sets A;, fori=1,...,n. From each i, choose a
point z; € A;, and add all the numbers M; and d(z;, z;), over all i and j.

Solution: For every k = 1,2,...,n, A is bounded. Thus, for every k = 1,2,...,n, there
is a constant M}, such that for all 2 and yy in Ay we have d(xg, yr) < My. If some Ay, is
empty, we can discard that set, since it does not make any difference in the union Uj!_; Aj.

So without loss of generality, we may assume that all A, for k = 1,2,...,n, are not empty.
Thus, for each k£ = 1,2,...,n, we may choose a point z, € Ag. Define the number
i=n,j=n
A=Y 3 )
1=1,7=1
where the second sum runs over all pairs (7,7) with ¢ and j in {1,2,...,n}. This is a

constant (finite) real number. We claim that the distance between any two points in
Up_, Ay, is bounded from above by M.

Let z and y be arbitrary points in U;_; Ay. If z and y belong to the same set Ay, then
d(z,y) < My < M. Now, assume that z € A; and y € A; for some i and j in {1,2,...,n}.
Then, by the triangle inequality,

d(z,y) < d(z,2) + d(zi,y) < Az, 2;) + d(zi, 25) + (25, 9:) < Mi +d(24, 25) + M; < M.

Exercise 9.5. Let (X,d) be a non-empty metric space, and let Z C X. Show that Z is
bounded if and only if there is # € X and r € R such that Z C B, (x).

Hint:If Z is bounded, choose a bound M, and consider the ball By(x), for an arbitrary
x € A. If A is contained in a ball of radius R, work with the bound 2R for the set A.

Solution: First assume that Z is bounded. This means that there is M > 0 such that for
any x and y in Z, d(x,y) < M. Since Z is not empty, we may choose z € Z, and consider
the ball Bps(x). Then, by the definition of the ball, we have Z C By(z).

Now assume that are x € X and r > 0 such that Z C B,(x). Then by the definition
of B.(x), for any y € Z, d(y,z) < r. If s and ¢ in Z are arbitrary points, then by triangle
inequality, we have d(s,t) < d(s,x) + d(z,t) < 2r. Therefore, Z is bounded.

Exercise 9.6. Consider the set R with the discrete metric dgisc. The set (0, 1) is closed
and bounded in (R, dgis.), but it is not compact.

Hint: Obviously, 1 provides a bound for the distance between any two points in (0,1).
Use that any set in R with respect to the discrete metric is open, so any set is also closed
(being the complement of some set in R).

Solution: Recall that in the metric space (R, dgisc), every set is open. This, implies that
every set is also closed (being the complement of an open set). Also, for every = and y in
R we have dgisc(z,y) < 1. Thus, R is bounded in the metric dgjsc.

For every = € R, the set {z} is open. Thus,

R={{z} [z (0,1)}

is an (uncountable) open cover for (0,1). Obviously, it does not have a finite sub-cover for

(0,1).



Exercise 9.7. Let (X, d) be a metric space, and assume that V,,, for n > 1, be a nest of
non-empty closed sets in X.

(i) Show that if X is compact, then N,>1V}, is not empty.

(ii) Give an example of a nest of non-empty closed sets V,,, for n > 1, in a metric space
such that N,,>1V}, is empty.

Hint: If the intersection is empty, then we may consider the cover of X by the sets
X\ V,, forn > 1, and drive a contradiction. For the second part, think about closed sets

m (R, dl)

Solution: (i) Assume in the contrary that N,>;V;, = 0. Consider the collection
R={X\V,|neN}L

Since each V}, is a closed set, each X \ 'V}, is an open set. Thus, R is a collection of open sets.
We claim that R is a cover for X. To see this, let x € X be arbitrary. Since N,enV, = 0,
there is ng € N such that « ¢ V,,,. This implies that x € X \ V,,,, and hence is covered by
an element of R.

Since X is compact, there must be a finite sub-cover of R for X. Thus, there is m € N
such that

xe Qv

Because V1 D Vo D V3 D ..., we have (X \ V1) C (X \Va) C (X \V3) C.... Therefore, by
the above equation
X C X\ V.

This implies that V;,, = (), which contradicts the hypothesis in the exercise.

(ii) For example, the sets V,, = [n, +00), for n = 1,2, ... are a nest of closed sets in the
metric space (R,d;). We have N,>1V,, = 0.

Exercise 9.8. Show that if a metric space is sequentially compact, then it is bounded.

Hint: If a set is not bounded, there are pairs of points z, and w, with d(z,,w,) >
n. Think about what happens if (zn)n>1 and (wp)p>1 converge to some points z and w,
respectively. You will need to identify a subsequence, so that both sequences converge along
that subsequence.

Solution: Assume in the contrary that there is a sequentially compact metric space which
is not bounded. Because X is not bounded, for every n € N, we may choose x,, and y, in
X such that d(zy, yn) > n.

Since X is sequentially compact, there is a subsequence of (zy,)n>1, say (2, )g>1, which
converges to some point  in X. Now consider the sequence (yy, )r>1 in X. Since X is
sequentially compact, there is a subsequence of (yn, )k>1, 58y (Ym, )i>1, which converges to
some y in X. Note that, since (Y, )i>1 is a subsequence of (yy, )x>1, the sequence (x,, )i>1
is a subsequence of (zy, )r>1. In particular, (x,, )i>1 converges to x and (¥, )i>1 converges
to y.



Since (@, )i>1 converges to z, for € = 1 there is n, € N such that for all i > n, we
have d(2,,, ) < 1. Similarly, since (Y, )i>1 converges to y, for € = 1 there is n,, € N such
that for all ¢ > n, we have d(ym,,y) < 1. Then, for all i > max{n,,n,} we have

d(@m; Ym;) < A&y, ) +d(z,y) + Ay, ym,) < 1+ d(z,y) +1 =24+ d(z,y).

This contradicts d(@m,, Ym,;) > m,, when m; is very large.

Exercise 9.9.% Let (X, d) be a sequentially compact metric space. Show that X is sepa-
rable, that is, there is a countable dense set in X.

Hint: Fiz an arbitrary n € N. Consider the open cover Ry, = {By,(z) | z € X}. Use
the sequential compactness of X to conclude that there must be a finite sub-cover of R, for
X. Let A,, be the centres of the balls in that finite sub-cover of Ry,. Consider A = Up>14y,
and show that A is countable and dense in X.

Solution: Fix an arbitrary n € N. The collection

is an open cover for X. Thus, by the compactness of X, there is a finite set A,, C X such
that

X< |J Byl
CCEAn

Define A = U,>14,,. Since each A, is a finite set, A is countable (it is either finite, or
in a bijection with N). Below we show that A is dense in X.

Let y € X and € > 0 be arbitrary. There is n € N such that 1/n < e. Since X C
Uzea, Bi/n(2), there is x € A, such that y € By, (7). Thus, z € A, and d(z,y) < 1/n <e.
Since y € X and € > 0 were arbitrary, we conclude that A is dense in X.

Exercise 9.10.*% Let (X,d) be a sequentially compact metric space, and R be an open
cover for X. Show that there is a countable sub-cover of R for X.

Hint: You can prove this statement in two steps. Step 1: Show that there is n € N such
that for every x € X, Bl/n(l’) is contained in some element of R (assume that such n does
not exist, so for every n € N there is xy, such that By ,(wy) is not contained in any ball.
Extract a subsequence and see what happens at the limit of that subsequence, .... ). Step 2:
By the previous exercise, there is a countable dense set {y1,y2,ys,...} in X. Let n be the
number from Step 1. For each i € N, By ,(y;) is contained in some element V; € R. Show
that the collection {V; | i € N} is a countable sub-cover of R for X.

Solution: First we show that there is n € N such that for every z € X, thereis V € R
such that By, (z) € V. Assume in the contrary that such n does not exist. Then, for
every n € N, there is x,, € X such that B; /n(:vn) is not contained in any set in R. Because
X is sequentially compact, there is a subsequence (xy, )g>1 of (2y)n>1 such that (z,, )r>1
converges to some x € X. Since R is an open cover for X, there is an open set V € R
such that z € V. Since V is open, there is § > 0 such that Bs(z) C V. Let us choose ny
large enough so that d(z,z,,) < §/2 and 1/n; < §/2. This implies that

By, (2ny) € Bs(z) C V.



Thus, By /p, (7n,) is contained in some element of R, which is a contradiction.

Let n € N be the number satisfying the property in the above paragraph. We showed in
the previous exercise that there is a countable dense set of points in X, say A = {y1, 92, ... }.
By the previous paragraph, for every ¢ > 1, there is V; € R such that B; /n(yi) C V.
Obviously, R" = {V; | i € N} is a sub-cover of R, and is countable. Moreover, since A is
dense in X, for any # € X we can find y € A such that x € By, (yx) € Vi. This shows
that R’ is a cover for X.

Exercise 9.11. Let (X,d) be a compact metric space, and assume that f: X — X is a
continuous map such that for all x € X, we have f(z) # x. Show that there is 6 > 0 such
that for all x € X, we have d(z, f(x)) > ¢.

Hint: Work with the map x — d(z, f(x)) on the set X, and think about if this map is
continuous, and what values it may take.

Solution: Define the map h: X — R as

hzx) = d(z, f(x)).

First we show that h is a continuous map on X. By exercise 5.8-(ii), for arbitrary x and
y in X, we have

[h(x) = h(y)| = |d(z, f(2)) —d(y, f(y))| < d(z,y) +d(f (@), f(y))-

Fix an arbitrary x € X. To see that h is continuous at x, fix an arbitrary ¢ > 0. Because f
is continuous at z, there is ¢’ > 0 such that for every y € X satisfying d(x,y) < ¢’ we have
d(f(x), f(y)) < €/2. Let 6 = min{d’,€/2}. Then, for every y € X satisfying d(z,y) < 9,
by the above inequality we have

[h(x) = h(y)| < d(z,y) +d(f(2), f(y)) <d+€/2<€/2+€/2=¢

By a theorem in the lectures, every continuous function on a compact set has a min-
imum, and its minimum is realised at some point in the domain of the function. Thus,
there is xp € X such that h realises its minimum at zy. That is, for all x € X we have
h(z) > h(xzg). However, by the assumption in the exercise h(zg) > 0. We can define

Unseen Exercise. Prove that if X C R is not compact, then there is a continuous map
f + X — R which is not bounded.
Hint: Consider two cases where X is not bounded, and X is not closed.

Solution: If X C R is not compact, then by the Heine-Borel theorem, either X is not
bounded, or X is not closed. We show that in both of those cases such a continuous
function f exists.

First assume that X is not bounded. Since the empty set is bounded, X is not empty.
Then, we may choose a point x € X. Define the map f: X — R as f(y) = d(y, ). Then,
f is continuous on X, since for every y and z in X, we have

1f(y) = f()] = |d(y, ) — d(z,2)] < d(y, 2).

Since X is not bounded, for every n € N, X is not contained in By, (z). This implies that
f is not bounded.



Now assume that X is not closed. Therefore, there is a sequence of points (z,)p>1 in
X which converges to some = € R, but 2 ¢ X. Define f : X — R as

The map f is continuous, since it is the composition of the continuous maps y — d(y, x)
and the map t — 1/t. But, f is not bounded from above, since f(z,) =1/d(zy,,z) — 00
as n — oo.



