Problem Sheet 9	Analysis II
Davoud Cheraghi	Autumn 2021

Exercise 9.1. Consider the metric space (\mathbb{R}, d_1) , and assume that a and b are real numbers with a < b. Show that all of the intervals (a, b], [a, b), $[a, +\infty)$, and $(-\infty, b]$ are not compact.

Exercise 9.2. Show that if A and B are compact subsets of a metric space (X, d), then $A \cup B$ is a compact set.

Exercise 9.3. Show that the ball

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

in the metric space (\mathbb{R}^2, d_2) is not compact.

Exercise 9.4. Let (X, d) be a metric space, and A_1, A_2, \ldots, A_n be a finite number of bounded sets in X. Then $\bigcup_{i=1}^n A_i$ is a bounded set in X.

Exercise 9.5. Let (X, d) be a non-empty metric space, and let $Z \subseteq X$. Show that Z is bounded if and only if there is $x \in X$ and $r \in \mathbb{R}$ such that $Z \subseteq B_r(x)$.

Exercise 9.6. Consider the set \mathbb{R} with the discrete metric d_{disc} . The set (0, 1) is closed and bounded in $(\mathbb{R}, d_{\text{disc}})$, but it is not compact.

Exercise 9.7. Let (X, d) be a metric space, and assume that V_n , for $n \ge 1$, be a nest of non-empty closed sets in X.

- (i) Show that if X is compact, then $\cap_{n\geq 1}V_n$ is not empty.
- (ii) Give an example of a nest of non-empty closed sets V_n , for $n \ge 1$, in a metric space such that $\bigcap_{n\ge 1} V_n$ is empty.

Exercise 9.8. Show that if a metric space is sequentially compact, then it is bounded.

Exercise 9.9.^{*} Let (X, d) be a sequentially compact metric space. Show that X is separable, that is, there is a countable dense set in X.

Exercise 9.10.^{*} Let (X, d) be a sequentially compact metric space, and \mathcal{R} be an open cover for X. Show that there is a countable sub-cover of \mathcal{R} for X.

Exercise 9.11. Let (X, d) be a compact metric space, and assume that $f : X \to X$ is a continuous map such that for all $x \in X$, we have $f(x) \neq x$. Show that there is $\delta > 0$ such that for all $x \in X$, we have $d(x, f(x)) \geq \delta$.

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with * are optional