MATH50001 Problems Sheet 1 Solutions

1a. Let $z = x+iy$. Then $iz = ix-y$ which implies Re $(iz) = -y = -Im z$ and Im $(iz) = Re z$.

2. a) $3 + 2i$ $1 + i$ = $3 + 2i$ $1 + i$ $\frac{1-i}{1-i}$ $1 - i$ = $3 + 2 + i(2 - 3)$ 2 = 5 2 $-i$ 1 2 . b) $1 + i$ 3 − i = $1 + i$ 3 − i $\frac{3+i}{2}$ $3 + i$ = $3 - 1 + i(3 + 1)$ $\frac{10^{(5+1)}}{10}$ = 1 5 $+$ i 2 5 . c) $z + 2$ $z + 1$ = $(x + 2) + iy$ $(x + 1) + iy$ = $(x + 2) + iy$ $(x + 1) + iy$ $\frac{(\mathsf{x}+1)-\mathsf{iy}}{(\mathsf{x}+1)-\mathsf{y}}$ $(x + 1) - iy$ = $(x+2)(x+1) + y^2 + i((x+1)y - (x+2)y)$ $(x + 1)^2 + y^2$ = $x^2 + 3x + 2 + y^2 - iy$ $\frac{(x+1)^2 + y^2}{(x+1)^2 + y^2} =$ $x^2 + 3x + 2 + y^2$ $\frac{(x+1)^2 + y^2}{(x+1)^2 + y^2} - i$ y $\frac{9}{(x+1)^2+y^2}$.

3.
$$
z = x + iy = r(\cos \theta + i \sin \theta)
$$
, where
\n $r = \sqrt{x^2 + y^2}$, $\text{Arg } z = \theta = \arcsin(y/r) = \arccos x/r$, s.t. $-\pi < \theta \le \pi$.
\na) $|z| = r = \sqrt{2}$, $\text{Arg } z = \arcsin(-1/\sqrt{2}) = -\pi/4$.
\nb) $|z| = r = 3$, $\text{Arg } z = \arcsin(-1) = -\pi/2$.
\nc) $|z| = r = 5$, $\text{Arg } z = \arcsin(4/5)$.
\nd) $|z| = r = \sqrt{5}$, $\text{Arg } z = -\arccos(1/\sqrt{5})$.
\n4. $|z| = r = \sqrt{2}$, $\text{Arg } z = \arcsin(1/\sqrt{2}) = \pi/4$.
\n $(1 + i)^{16} = r^{16}(\cos(16 \cdot \pi/4) + i \sin(16 \cdot \pi/4)) = 256$.

5.

a) We can assume that z_1 and z_2 are two points on the real line, so that $z_1 = x_1$ and $z_2 = x_2$. Then

$$
\{z: |z-z_1|=|z-z_2|\}=\left\{z: z=\frac{x_1+x_2}{2}+\mathrm{i} y,\, y\in\mathbb{R}\right\}.
$$

b) The equation $1/z = \bar{z}$ iff $|z|^2 = 1$ that is the unit circle.

- c) Re $z = 3$ coincide with the straight line $\{z = x + iy, x = 3\}$.
- d) Re $z = x + iy > c$ is a half plane whose $x > c$.

e) Let $z = x + iy$, $a = a_1 + ia_2$ and $b = b_1 + ib_2$, where $a_1, a_2, b_1, b_2 \in \mathbb{R}$ and let $a \neq 0$. Note that

$$
Re\,za + b = xa_1 - ya_2 + b_1 > 0
$$

If $a_2 = 0$ then $x > -b_1/a_1$ and if $a_2 \neq 0$ then $y < \frac{a_1}{a_2}x + b_1$. f) Let $z = x + iy$. Then we have $\sqrt{x^2 + y^2} = x + 1$. This implies that $y^2 = 2x + 1$ with $x \ge -1$.

g) Let $z = x + iy$. Then Im $z = y = c$ is the equation of a line parallel to the real axis.

6.

$$
\langle z_1, z_2 \rangle = x_1 x_2 + y_1 y_2.
$$

$$
\frac{1}{2} [(z_1, z_2) + (z_2, z_1)] = \frac{1}{2} [z_1 \overline{z}_2 + z_2 \overline{z}_1]
$$

$$
= \frac{1}{2} (x_1 x_2 + y_1 y_2 + i (x_2 y_1 - x_1 y_2) + x_1 x_2 + y_1 y_2 + i (x_1 y_2 - x_2 y_1))
$$

$$
= x_1 x_2 + y_1 y_2.
$$

7. Here $u(x, y) = x^2 + y^2$ and $v(x, y) = 0$. Since $u'_x = 2x$ and $u'_y = 0$ 2y, the Cauchy-Riemann equations are satisfied only at $z = 0$. Hence differentiability fails at all non-zero points.

To verify differentiability at 0, we observe that

$$
\frac{|z|^2-0}{z-0}=\frac{z\bar{z}}{z}=\bar{z}\to 0
$$

as $z \rightarrow 0$. Then the derivative exists and has value 0.

8. If $f(x+iy) = u(x, y) + iv(x, y) = \sqrt{|x||y|}$, then $u(x, y) = \sqrt{|x||y|}$ and $v(x, y) = 0.$

Since the function $u(x, y)$ takes the constant value 0 along both the x- and the y-axes we conclude that $u'_x = u'_y = 0$.

More formally: at the point $(0, 0)$

$$
u'_{x} = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0,
$$

2

and the computation for u'_y is essentially identical. Thus the Cauchy-Riemann equations are trivially satisfied. On the other hand

$$
\frac{f(z) - f(0)}{z - 0} = \frac{\sqrt{|x||y|}}{x + iy} = \frac{\sqrt{\cos \theta \sin \theta}}{\cos \theta + i \sin \theta}, \qquad (*)
$$

where $x = r \cos \theta$ and $y = r \sin \theta$. Thus (*) is independent of r and if we take $\theta = 0$ or $= \pi/2$ then $(f(z) - f(0))/(z - 0) = 0$ but if $\theta = \pi/4$ then $(f(z) - f(0))/(z - 0) = (1 - i)/2.$

We are forced to conclude that the limit does not exist as $z \to 0$.

9. Consider

$$
\sum_{k=0}^{n-1} e^{2ik\pi/n} = 1 + e^{2i\pi/n} + e^{4i\pi/n} + \cdots + e^{2(n-1)i\pi/n} = \frac{1 - e^{2i\pi}}{1 - e^{2i\pi/n}} = 0. \quad (*)
$$

Note that

$$
e^{2ik\pi/n} = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)
$$

The complex number equals to zero iff its real and imaginary parts are zeros. Therefore (∗) implies

$$
\cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \dots + \cos\left(\frac{2(n-1)\pi}{n}\right) = -1
$$

and

$$
\sin\left(\frac{2\pi}{n}\right) + \sin\left(\frac{4\pi}{n}\right) + \dots + \sin\left(\frac{2(n-1)\pi}{n}\right) = 0.
$$

10).

(i)

If $C \neq 0$, then the images of the straight lines $x = C$ are circles

$$
u^2 + v^2 - \frac{u}{C} = 0.
$$

If $C = 0$, then the image is the axis $u = 0$.

If C \neq 0, then the images of the straight lines $y = C$ are circles $u^2 + v^2 + \frac{v}{C}$ $\frac{\nu}{C}$. If $C = 0$, then the image is the axis $v = 0$.

(ii) The images of the circles $|z| = R$ are the circles $|w| = 1/R$.

(iii) The images of the rays arg $z = \alpha$ are the rays arg $w = -\alpha$.

(iv) The image of the circle $|z - 1| = 1$ is the straight line $u = 1/2$.