MATH50001 - Problems Sheet 2

1. Evaluate

1a) \sqrt{i} , $\sqrt{1+i}$, $\sqrt{\frac{1-i\sqrt{3}}{2}}$, where $\sqrt{1}$ takes its principal value. 1b) sin i, 2^{i} , i^{i} , $(-1)^{2i}$, where multi-valued functions is considered. 1c) Log i, Log (-1-i).

1d) Find an error in the reasoning leading to Bernoulli's paradox: $(-z)^2 = z^2$, hence 2 Log(-z) = 2 Log(z) and consequently, Log(-z) = Log(z).

2. Prove that

2a) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$. 2b) $\tan 2z = \frac{2 \tan z}{1 - \tan^2 z}$.

3. Let $\text{Log } z = \ln |z| + i\theta$, where $-\pi < \theta \le \pi$ and $z = |z|e^{i\theta}$, $(z \ne 0)$. Prove that Log is not continuous on $(-\infty, 0)$.

Hint: Consider the sequences $\{-1 + i/n\}$ and $\{-1 - i/n\}$.

4.*

(i) Let
$$P(z) = \frac{z^{n}-1}{z-1}$$
. Find $P(1)$.

(ii) Let Q_k , k = 0, ..., n-1, be the vertices of a regular polygon inscribed in the unit circle such that $Q_0 = 1$. Let d_k be the distance between Q_k and Q_0 . Show that

$$\prod_{k=1}^{n-1} d_k = n$$

5. Compute the integral

$$J = \int_{\gamma} z^k dz, \qquad k = 0, \pm 1, \pm 2, \dots$$

2a) $\gamma = \gamma_1 = \{ z = |z| e^{i\theta} \in \mathbb{C} : |z| = 1, \ \theta \in [0, 2\pi] \}.$ 2b) $\gamma = \gamma_2 = \{ z = |z| e^{i\theta} \in \mathbb{C} : |z| = 1, \ \theta \in [0, 4\pi] \}.$

4		
1	h	
٩	U	
	-	-

6a) Compute the integral $J = \int_{\gamma} \text{Im } z \, dz$, where

- γ is the an interval between $w_1 = 0$ and $w_2 = 1 + 2i$.
- γ is a part of the parabola $y = 2x^2$ connecting $w_1 = 0$ and $w_2 = 1 + 2i$.

6b. Compute the integral

$$\mathbf{J} = \int_{\gamma} (\mathbf{i}\bar{z} + z^2) \, \mathrm{d}z,$$

where γ is a part of the circle |z| = 2, arg $z \in [\pi/2, \pi]$.

7.* Evaluate the contour integrals:

$$\int_{\gamma} \frac{1}{z} \, \mathrm{d}z,$$

where

a)
$$\gamma = \{z \in \mathbb{C} : z = e^{i\theta}, \theta \in [-\pi/2, \pi/2]\},\$$

b) $\gamma = \{z \in \mathbb{C} : z = e^{i\theta}, \theta \in [3\pi/2, \pi/2]\}.$

Integrals over closed curves below are with counterclockwise orientation: 8. 1

$$\oint_{\gamma} \frac{1}{(z-z_0)^n} dz, \qquad n = 0, \pm 1, \pm 2, \dots,$$

where $\gamma = \{z \in \mathbb{C} : |z-z_0| = r\}, r > 0.$

9.

$$\oint_{\gamma} \sqrt{z} \, \mathrm{d}z,$$

where $\gamma = \{z \in \mathbb{C} : |z| = 3\}.$