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Solutions

1)

∮
z2

(z− 1)n
dz =

2π i

(n− 1)!

dn−1

dzn−1
z2 =


2π i, n = 1,

4π i, n = 2,

2π i, n = 3,

0, n > 3.

.

2 a) This is the ellipse with two focuses at 2 and −2.

2 b) ∮
γ

sin z
(z+ 2)3

dz =
2π i

2!

d2

dz2
sin z

∣∣∣
z=−2

= −π i sin(−2) = π i sin 2.

3) Let p be a polynomial. Then, by Cauchy’s formula

1

2πi
	
∫
|z|=1

1− zp(z)

z
dz =

1

2πi
	
∫
|z|=1

1

z
dz = 1.

Therefore by using the ML-inequality we obtain

1 =

∣∣∣∣ 12πi 	
∫
|z|=1

1− zp(z)

z
dz

∣∣∣∣ ≤ max
|z|=1

|1 − zp(z)| = max
|z|=1

|z−1 − p(z)|.

4) Indeed, for any z0, z1 ∈ C, z0 6= z1 and R sufficiently large, we have

1

2πi
	
∫
|z|=R

f(z)

(z− z0)(z− z1)
dz

=
1

z0 − z1

(
1

2πi
	
∫
|z|=R

f(z)

(z− z0)
dz−

1

2πi
	
∫
|z|=R

f(z)

(z− z1)
dz

)
=

1

z0 − z1
(f(z0) − f(z1)) .

(3 unseen)
1



2

Since f is bounded, there is a constant M, such that |f(z)| ≤ M, z ∈ C.
Therefore using the ML-inequality we find∣∣∣ 1
2πi

	
∫
|z|=R

f(z)

(z− z0)(z− z1)
dz
∣∣∣ ≤MR max

z:|z|=R

1

|(z− z0)(z− z1)|

≤MR
1

(R− |z0|)(R− |z1|)

=MR−1 1

(1− |z0|/R)(1− |z1|/R)
→ 0,

as R→ ∞
This implies

1

z1 − z0
(f(z0) − f(z1)) = 0

and thus f(z0) = f(z1). Since z0 and z1 are arbitrary, we finally obtain that
f is a constant function.

5) Note that if n = 0, then we simply apply Liouville’s theorem.
Assume that |f(z)| ≤ C(1 + |z|)n with some C > 0. Then for any z0 ∈ C
we have

|f(n+1)(z0)| =

∣∣∣∣(n+ 1)!

2iπ
	
∫
|z−z0|=R

f(z)

(z− z0)n+2
dz

∣∣∣∣
≤ C(n+ 1)!

2π
max

z:|z−z0|=R
(1+ |z|)n

2πR

Rn+2
→ 0,

as R→ ∞.
Therefore f(n+1) ≡ 0 and thus f(n) is a constant function. We conclude that
f(z) is a polynomial of degree at most n by integrating f(n)(z) n-times.

6) Assume that f = u+ iv is an entire function that has a bounded real part.
Then g(z) = ef(z) is also entire. Note that sinve u is bounded then |g| = eu

is bounded. Thus g is constant. and therefore f is a constant function.

7)
a) converges,
b) converges,∣∣∣3− (2i)n

cosni

∣∣∣ = 2 ∣∣∣3− (2i)n

e−n + en

∣∣∣ = 2 2n
en

|3/2n − in|

1+ e−2n

Clearly |3/2n − in| ≤ 3/2n + 1 ≤ 5/2 and 1+ e−2n > 1. Therefore∣∣∣3− (2i)n

cosni

∣∣∣ ≤ 5 2n
en
.
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Since 2 < e we conclude that series converges.

c) diverges, indeed:∣∣∣ ni
n+ i

∣∣∣n2

=
( n√

n2 + 1

)n2

=
( 1√

1+ 1/n2

)n2

=
1

(1+ 1/n2)n2/2
→ e−1/2 6= 0.

Because it is known that

lim
t→∞

(
1+

1

t

)t
= e.

8) Re z ≤ 0.

9) a) |z| < 1; b) |z− 4| < 2−1/4; c) |z− 2| < 1.

10)
a)

∑∞
n=2

zn

2n−1 , |z| < 2

b)
∑∞

n=0
(−1)n

(1+i)n+1 (z− i)
n, |z− i| <

√
2.

11)
a)

∑∞
n=0

(−1)n

(2n)!
z2n, |z| <∞.

b)
∑∞

n=0
e1+i

n!
(z− 1− i)n, |z− 1− i| <∞.

c) π i
2
+
∑∞

n=1
(−1)n−1

nin
(z− i)n, |z− i| < 1.

12)
Clearly

ak =
1

k!
f(k)(0).

a) Let 1 > ε > 0. By using the generalized Couchy’s formula we find

f(k)(0) =
k!

2iπ

∮
|z|=1−ε

f(z)

zk+1
dz.

Therefore by using the ML inequality and the fact that |f(z)| < 1 in D we
have

|ak| ≤
1

k!

∣∣∣ k!
2iπ

∮
|z|=1−ε

f(z)

zk+1
dz
∣∣∣ ≤ 1

(1− ε)k
.

Letting ε→ 0 we obtain |ak| ≤ 1.
b) We now use the generalized Cauchy’s formula integrating over a circle
Cr = {z ∈ C : |z| = r}.

f(k)(0) =
k!

2iπ

∮
|z|=r

f(z)

zk+1
dz.
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By applying the ML inequality we find by using the inequality |f(z)| <
(1− |z|)−1

|ak| ≤
r

rk+1(1− r)
Note that

d

dr
rk(1− r) = krk−1 − (k+ 1)rk = 0

implies r = k/(k+ 1) and finally we obtain

|ak| ≤
(k+ 1)k+1

kk
.


