MATH50001 Problems Sheet 4 Solutions

1)

$$\oint \frac{z^2}{(z-1)^n} dz = \frac{2\pi i}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} z^2 = \begin{cases} 2\pi i, & n = 1, \\ 4\pi i, & n = 2, \\ 2\pi i, & n = 3, \\ 0, & n > 3. \end{cases}$$

2 a) This is the ellipse with two focuses at 2 and -2.

2 b)

$$\oint_{\gamma} \frac{\sin z}{(z+2)^3} \, \mathrm{d}z = \frac{2\pi i}{2!} \frac{\mathrm{d}^2}{\mathrm{d}z^2} \, \sin z \Big|_{z=-2} = -\pi i \sin(-2) = \pi i \sin 2.$$

3) Let p be a polynomial. Then, by Cauchy's formula

$$\frac{1}{2\pi \mathfrak{i}} \oint_{|z|=1} \frac{1-z\mathfrak{p}(z)}{z} \, \mathrm{d} z = \frac{1}{2\pi \mathfrak{i}} \oint_{|z|=1} \frac{1}{z} \, \mathrm{d} z = 1.$$

Therefore by using the ML-inequality we obtain

$$1 = \left| \frac{1}{2\pi i} \oint_{|z|=1} \frac{1 - zp(z)}{z} dz \right| \le \max_{|z|=1} |1 - zp(z)| = \max_{|z|=1} |z^{-1} - p(z)|.$$

4) Indeed, for any $z_0, z_1 \in \mathbb{C}$, $z_0 \neq z_1$ and R sufficiently large, we have

$$\begin{split} \frac{1}{2\pi i} \oint_{|z|=R} \frac{f(z)}{(z-z_0)(z-z_1)} \, dz \\ &= \frac{1}{z_0 - z_1} \left(\frac{1}{2\pi i} \oint_{|z|=R} \frac{f(z)}{(z-z_0)} \, dz - \frac{1}{2\pi i} \oint_{|z|=R} \frac{f(z)}{(z-z_1)} \, dz \right) \\ &= \frac{1}{z_0 - z_1} \left(f(z_0) - f(z_1) \right). \end{split}$$

(3 unseen)

•

Since f is bounded, there is a constant M, such that $|f(z)| \leq M, z \in \mathbb{C}$. Therefore using the ML-inequality we find

$$\begin{split} \left| \frac{1}{2\pi i} \oint_{|z|=R} \frac{f(z)}{(z-z_0)(z-z_1)} \, dz \right| &\leq M R \, \max_{z:|z|=R} \frac{1}{|(z-z_0)(z-z_1)|} \\ &\leq M R \, \frac{1}{(R-|z_0|)(R-|z_1|)} \\ &= M \, R^{-1} \, \frac{1}{(1-|z_0|/R)(1-|z_1|/R)} \to 0, \end{split}$$

This implies

$$\frac{1}{z_1 - z_0} \left(f(z_0) - f(z_1) \right) = 0$$

and thus $f(z_0) = f(z_1)$. Since z_0 and z_1 are arbitrary, we finally obtain that f is a constant function.

5) Note that if n = 0, then we simply apply Liouville's theorem. Assume that $|f(z)| \le C(1 + |z|)^n$ with some C > 0. Then for any $z_0 \in \mathbb{C}$ we have

$$\begin{split} |\mathbf{f}^{(n+1)}(z_0)| &= \left| \frac{(n+1)!}{2i\pi} \oint_{|z-z_0|=R} \frac{\mathbf{f}(z)}{(z-z_0)^{n+2}} \, dz \right| \\ &\leq \frac{C(n+1)!}{2\pi} \max_{z:|z-z_0|=R} (1+|z|)^n \frac{2\pi R}{R^{n+2}} \to 0, \\ & \text{as} \quad R \to \infty. \end{split}$$

Therefore $f^{(n+1)} \equiv 0$ and thus $f^{(n)}$ is a constant function. We conclude that f(z) is a polynomial of degree at most n by integrating $f^{(n)}(z)$ n-times.

6) Assume that f = u + iv is an entire function that has a bounded real part. Then $g(z) = e^{f(z)}$ is also entire. Note that sinve u is bounded then $|g| = e^{u}$ is bounded. Thus g is constant. and therefore f is a constant function.

7)

a) converges,

b) converges,

$$\left|\frac{3-(2i)^{n}}{\cos ni}\right| = 2\left|\frac{3-(2i)^{n}}{e^{-n}+e^{n}}\right| = 2\frac{2^{n}}{e^{n}}\frac{|3/2^{n}-i^{n}|}{1+e^{-2n}}$$

Clearly $|3/2^n - i^n| \le 3/2^n + 1 \le 5/2$ and $1 + e^{-2n} > 1$. Therefore

$$\left|\frac{3-(2\mathfrak{i})^n}{\cos \mathfrak{n}\mathfrak{i}}\right| \leq 5\frac{2^n}{e^n}.$$

Since 2 < e we conclude that series converges.

c) diverges, indeed:

$$\left|\frac{ni}{n+i}\right|^{n^2} = \left(\frac{n}{\sqrt{n^2+1}}\right)^{n^2} = \left(\frac{1}{\sqrt{1+1/n^2}}\right)^{n^2} = \frac{1}{(1+1/n^2)^{n^2/2}} \to e^{-1/2} \neq 0.$$

Because it is known that

$$\lim_{t\to\infty}\left(1+\frac{1}{t}\right)^t=e.$$

8) Re $z \leq 0$.

9) a)
$$|z| < 1$$
; b) $|z - 4| < 2^{-1/4}$; c) $|z - 2| < 1$.

- 10) a) $\sum_{n=2}^{\infty} \frac{z^n}{2^{n-1}}, \quad |z| < 2$ b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(1+i)^{n+1}} (z-i)^n, \quad |z-i| < \sqrt{2}.$
- 11)

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, |z| < \infty.$$

b) $\sum_{n=0}^{\infty} \frac{e^{1+i}}{n!} (z-1-i)^n, |z-1-i| < \infty$
c) $\frac{\pi i}{2} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{ni^n} (z-i)^n, |z-i| < 1.$

12)

Clearly

$$a_k = \frac{1}{k!} f^{(k)}(0).$$

a) Let $1 > \varepsilon > 0$. By using the generalized Couchy's formula we find

$$\mathbf{f}^{(k)}(\mathbf{0}) = \frac{k!}{2\mathrm{i}\pi} \oint_{|z|=1-\varepsilon} \frac{\mathbf{f}(z)}{z^{k+1}} \, \mathrm{d}z.$$

Therefore by using the ML inequality and the fact that |f(z)| < 1 in \mathbb{D} we have

$$|\mathfrak{a}_{k}| \leq \frac{1}{k!} \left| \frac{k!}{2i\pi} \oint_{|z|=1-\varepsilon} \frac{f(z)}{z^{k+1}} \, \mathrm{d}z \right| \leq \frac{1}{(1-\varepsilon)^{k}}.$$

Letting $\varepsilon \to 0$ we obtain $|a_k| \le 1$.

b) We now use the generalized Cauchy's formula integrating over a circle $C_r = \{z \in \mathbb{C} : |z| = r\}.$

$$\mathsf{f}^{(k)}(\mathfrak{0}) = \frac{k!}{2\mathsf{i}\pi} \oint_{|z|=r} \frac{\mathsf{f}(z)}{z^{k+1}} \, \mathrm{d}z.$$

By applying the ML inequality we find by using the inequality $|f(z)| < (1 - |z|)^{-1}$

$$|\mathfrak{a}_k| \leq \frac{r}{r^{k+1}(1-r)}$$

Note that

$$\frac{d}{dr}r^k(1-r) = kr^{k-1} - (k+1)r^k = 0$$
 implies $r = k/(k+1)$ and finally we obtain

$$|\mathfrak{a}_k| \leq \frac{(k+1)^{k+1}}{k^k}.$$