1. Evaluate

$$\oint_{\gamma} \frac{z^2}{(z-1)^n} \, \mathrm{d}z, \qquad n=1,2,\ldots,$$

where $\gamma = \{z : |z| = 2\}.$

2.

2a) Find the curve $\gamma = \{z \in \mathbb{C} : |z - 2| + |z + 2| = 10\}$. 2b) Evaluate the contour integral:

$$\oint_{\gamma} \frac{\sin z}{(z+2)^3}.$$

3.* Show that for every polynomial p(z),

$$\max_{\{z:|z|=1\}} |z^{-1} - p(z)| \ge 1.$$

4. Let f(z) be a bounded entire function. Compute for R large and $z_0, z_1 \in \mathbb{C}$ ($|z_0|, |z_1| < R$) the value of the integral

$$\frac{1}{2\pi \mathfrak{i}} \oint_{|z|=R} \frac{f(z)}{(z-z_0)(z-z_1)} \, \mathrm{d}z.$$

By taking $R \to \infty$, obtain a new proof of Liouville's theorem.

5. Let f be an entire function such that $|f(z)| \le C(1+|z|)^n$, for some $n \in \mathbb{N}$ and where $C \ge 0$. Show that f is a polynomial of degree smaller or equal than n.

6. Prove that if an entire function has a bounded real part or a bounded imaginary part, then it is constant.

7. Determine whether the series converges or diverges:

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^{2}+i}$$

b.
$$\sum_{n=1}^{\infty} \frac{3-(2i)^{n}}{\cos ni}$$

c.
$$\sum_{n=1}^{\infty} \left(\frac{ni}{n+i}\right)^{n^{2}}$$

8. For what values of z does the series $\sum_{n=1}^{\infty} \frac{e^{nz}}{(n+1)^2}$ converge?

9. Find the circle of convergence for the power series:

a.
$$\sum_{n=1}^{\infty} \frac{1}{(n+i)^3} z^n$$

b. $\sum_{n=1}^{\infty} (1+i)^n (z-4)^{2n}$
c. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+i}} (z-2)^n$.

2

10. Find the power series of the function

a.
$$f(z) = \frac{z^2}{2-z}$$
 about $z_0 = 0$.
b. $f(z) = \frac{1}{1+z}$ about $z_0 = i$.

11. Find the Taylor series for:

- a. $\cos z$ about $z_0 = 0$.
- b. e^z about $z_0 = 1 + i$.
- c. Log *z* about $z_0 = i$.

12.* Let f be holomorphic in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let its Taylor series at 0 is

$$f(z) = \sum_{k=0}^{\infty} a_n z^n.$$

- a. Prove that |f(z)| < 1 implies $|a_k| \le 1$.
- b. Let now

$$|\mathsf{f}(z)| < \frac{1}{1-|z|}.$$

What is the best bound you can get from Cauchy estimates for $|a_k|$? How does the bound behave as $n \to \infty$?