
MATH50001 Problems Sheet 6
Solutions

1) Consider

f(z) =
za−1

1+ z
, z = reiθ, 0 ≤ θ < 2π

and consider the contour

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4,
where

γ1 = {z : z = rei0, r ∈ [ε, R]}, R > 1,

γ2 = {z : z = R eiθ, 0 ≤ θ < 2π},
γ3 = {z : z = r ei2π, r ∈ [R, ε)]},

γ4 = {z : z = ε eiθ, θ ∈ (2π, 0]}.

Then

	
∫
γ

za−1

1+ z
dz = 2π iRes

[ za−1
1+ z

, eiπ
]
= 2π ieiπ(a−1) = −2π i eiπa.

Moreover, as ε→ 0 and R→ ∞ we obtain∫
γ1

za−1

1+ z
dz =

∫R
ε

ra−1

1+ r
dr→ ∫∞

0

ra−1

1+ r
dr,∣∣∣ ∫

γ2

za−1

1+ z
dz
∣∣∣ ≤ 2πR Ra−1

R− 1
→ 0,∫

γ3

za−1

1+ z
dz =

∫ ε
R

ra−1 ei2π(a−1)

1+ r ei2π
ei2π dr→ −ei2πa

∫∞
0

ra−1

1+ r
dr,∣∣∣ ∫

γ4

za−1

1+ z
dz
∣∣∣ ≤ 2π ε εa−1

1− ε
→ 0.
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Therefore we have(
1− ei2πa

) ∫∞
0

xa−1

1+ x
dx = −2π i eiπa.

and finally

sinπa
∫∞
0

xa−1

1+ x
dx = π.

2) Let
γ1 = {z = x+ iy : −R ≤ x ≤ R, y = 0},

γ2 = {z : z = R eiθ, 0 < θ < π}, R > 1,

and γ = γ1 ∪ γ2. Let

f(z) =
z− 1

z5 − 1
.

The simple poles of f in the upper half-plane are at the points z1 = e2iπ/5

and z2 = e4iπ/5. The point z = 1 is a removable singularity of f. Therefore

	
∫
γ

z− 1

z5 − 1
dz = 2iπ

(
Res [f, z1] + Res [f, z2]

)
= 2iπ

(
lim
z→z1 f(z)(z− z1) + lim

z→z2 f(z)(z− z2)
)

By using l’Hopital’s rule we find

lim
z→z1 f(z)(z− z1) =

[(z− 1)(z− z1)]
′

[(z5 − 1)] ′

∣∣∣
z=z1

=
e2iπ/5 − 1

5 (e2iπ/5)4

=
e2iπ/5(e2iπ/5 − 1)

5 e2iπ
=
e4iπ/5 − e2iπ/5

5

and also

lim
z→z2 f(z)(z− z2) =

e4iπ/5 − 1

5(e4iπ/5)4
=
e8iπ/5 − e4iπ/5

5
.

Therefore

	
∫
γ

z− 1

z5 − 1
dz =

2iπ

5

(
e4iπ/5 − e2iπ/5 + e8iπ/5 − e4iπ/5

)
=
2iπ

5

(
− e2iπ/5 + e−2iπ/5

)
= −

2iπ

5
2i sin(2π/5) =

4π

5
sin(2π/5).
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Moreover, if z ∈ γ2, then by using the ML inequality we obtain∣∣∣ ∫
γ2

f(z)dz
∣∣∣ ≤ ∫

γ2

|f(z)|dz =

∫
γ2

∣∣∣ z− 1
z5 − 1

∣∣∣ ≤ πR max
z∈γ2

∣∣∣ z− 1
z5 − 1

∣∣∣
≤ πR R+ 1

R5 − 1
→ 0, as R→ ∞.

Thus∫∞
−∞

x− 1

x5 − 1
dx = lim

R→∞
(
	
∫
γ

z− 1

z5 − 1
dz−

∫
γ2

f(z)dz
)
=
4π

5
sin(2π/5).

3) Consider

	
∫
γ

eiz
2

dz,

where γ = γ1 ∪ γ2 ∪ γ3,

γ1 = {z : z = x+ i0, 0 < x < R},

γ2 = {z : z = Reiθ, 0 ≤ θ ≤ π/4},
γ3 = {z : z = teiπ/4, t ∈ (R, 0]}.

Since eiz2 is holomorphic we obtain

	
∫
γ

eiz
2

dz =

∫
γ1

eiz
2

dz+

∫
γ2

eiz
2

dz+

∫
γ3

eiz
2

dz =: I1 + I2 − I3 = 0.

Note that

I1 =

∫R
0

eix
2

dx and I3 =

∫R
0

ei(e
iπ/4t)2 eiπ/4 dt =

1+ i√
2

∫R
0

e−t
2

dt.
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Now,

|I2| =
∣∣∣ ∫
γ2

eiz
2

dz
∣∣∣ = ∣∣∣ ∫π/4

0

eiR
2ei2θ Ri eiθdθ

∣∣∣
≤ R

∫π/4
0

∣∣∣eiR2(cos 2θ+i sin 2θ)
∣∣∣dθ = R

∫π/4
0

e−R
2 sin 2θ dθ.

It is known that sin 2θ ≥ 4θ/π (show this) and therefore

|I2| ≤ R
∫π/4
0

e−R
24θ/π dθ =

π

4R
(1− e−R

2

) → 0, R→ ∞.
Therefore∫∞
0

eix
2

dx = lim
R→∞

∫R
0

eix
2

dx = lim
R→∞ I3 = lim

R→∞
1+ i√
2

∫R
0

e−t
2

dt =
(1+ i)

√
π

2
√
2

,

where we used
∫∞
0
e−t

2
dt =

√
π/2.

Finally comparing real parts we obtain∫∞
0

cos(x2)dx =
√
π/8.

4) On the circle |z| = 3/2, |z5| = 243/32 and |15z+ 1| ≥ 15|z|− 1 = 21.5.
Thus |15z + 1| > |z|5. Hence there is no zero of the polynomial on the
circle. If we now denote by f(z) = 15z + 1 and by g(z) = z5, then by
Rouche’s Theorem we have N(f + g) = N(f) inside |z| = 3/2. Since the
equation f(z) = 15z + 1 = 0 has one solution z0 = −1/15, we conclude
that z5 + 15z+ 1 has one zero inside the circle |z| < 3/2.

On the circle |z| = 2, |z5| = 32 and |15z + 1| ≤ 15|z| + 1 = 31. Hence
there is no zero of the polynomial on the circle and by Rouche’s Theorem
N(z5 + 15z + 1) = N(z5) = 5 inside |z| = 2. Thus we deduce that in the
annulus {z : 3/2 < lzl < 2} there are four zeros.

5) Let us split the functionw(z) = f(z)+g(z) = z100+8z10−3z3+z2+z+1
such that

f(z) = 8z10 and g(z) = z100 − 3z3 + z2 + z+ 1.

Then for |z| = 1 we have

|f(z)| = 8 > 7 = |z100|+ |3z3|+ |z2|+ |z|+ 1 ≥ |z100 − 3z3 + z2 + z+ 1|.

Therefore the number of solutions of the equation w(z) = 0 inside the unit
disc coincides with the number of solutions of z10 = 0, namely 10.
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6)
a) Let us consider the case z : |z| = 1 and split the function w(z) =
3z9+8z6+ z5+2z3+1 as f(z) = 8z6 and g(z) = 3z9+ z5+2z3+1. Then

|f(z)| = 8 > 7 = |3z9|+ |z5|+ |2z3|+ 1 ≥ |3z9 + z5 + 2z3 + 1| = |g(z)|.

Therefore inside the unit disk there are 6 zeros of w.
b) Let us consider first the case z : |z| = 2. Denote f(z) = 3z9 and
g(z) = 8z6 + z5 + 2z3 + 1. Then

|f(z)| = 329 = 1536 > 512+ 32+ 16+ 1 = 8|z6|+ |z5|+ 2|z3|+ 1

≥ |8z6 + z5 + 2z3 + 1| = |g(z).

Therefore there are 9 roots of the equationw(z) = 0 inside the disc |z| = 2.
Note that there are no roots of the equation w(z) = 0 on the circle |z| = 1.
Therefore we conclude that there are 3 roots of the equation w(z) = 0 in
annulus {z : 1 < |z| < 2}.

7) On the circle |z| = 1 we have |azn| = |a| and |ez| = ecos θ < e. Thus
|azn| > |ez|, |z| = 1. The function azn − ez has no roots on |z| = 1 and no
poles. By Rouche’s Theorem, N(azn − ez) = N(azn) = n.

8) Let us first prove that if |p(eiθ)| ≤ 1, then p(z) = zn. Indeed, consider

q(z) = znp(1/z) = 1+ an−1z+ · · ·+ a0zn.
By using the maximum modulus principle we obtain

max
|z|≤1

|q(z)| = max
|z|=1

|q(z)| = max
|z|=1

|einθp(e−iθ| ≤ 1,

where we also have used the assumption |p(e−iθ| ≤ 1. This implies

an−1 = · · · = a0 = 0
and thus p(z) = zn.

9) Assume that such a function exists. Since it does not vanish we have
|(f(z))−1| = e−|z| ≤ 1. However |f(0)| = 1 and therefore by the maximum
modulus principle we have that f is constant. The constant function cannot
satisfy |f(z)| = e|z|.

10) Consider the function g(z) = f(z)/z. Since f is holomorphic in D and
f(0) = 0, we conclude that g(z) is holomorphic in D.
Consider g in Dρ = {z : |z| < ρ}, where ρ < 1. By the maximum modulus
principle |g| has its maximum on the boundary γρ = {z : |z| = ρ}. Since
|f(z)| ≤ 1, z ∈ D, we have

|g(z)| =
|f(z)|

ρ
≤ 1
ρ
, ∀z ∈ γρ.
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Fixing z ∈ Dρ ⊂ D and letting ρ → 1 we obtain |g(z)| ≤ 1 and thus
|f(z)| ≤ |z| for any z ∈ D.


