MATHS50001 Problems Sheet 6
Solutions

1) Consider

a—1
f(z):Z , z=re® 0<0<2m

Y=v1Uyv2Uv3UYs,

where .
vi={z:z=71e, r€[eR]}, R>1T,

v.={z:z=Re"® 0<0 < 2m,
vi={z:z=re"" 1€ [R¢)]},
va={z:z=¢ce" 0 e (2m0]}.

Then

a—1 a—1
# 4z =2miRes [Z ,ei”} =2mie™ Y = 2miel
y1+z 142z

Moreover, as ¢ — 0 and R — oo we obtain

a—1 R
J z dz:J
V1]+Z 3

—1 0 T.(171
dr — J —dr,
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a—1
J L dz= J — e dr — —e¥™ J dr,
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Therefore we have
o0 Xafl

<1 — eiz”“> JO Tx dx = —2mie™,

and finally

2) Let
vi={z=x+1iy: -R<x <R,y =0},
v, ={z:z=Re® 0<0<m, R>1,
and y =vy; Uvy,. Let

z—1
f(z) = ——.
(z) = 5
The simple poles of f in the upper half-plane are at the points z; = e
and z, = ">, The point z = 1 is a removable singularity of f. Therefore

2im/5

z—1 .
é{i e dz = 2in (Res [f,z1] + Res [f, zz])

=2im ( lim f(z)(z —zy) + lim f(z)(z—zz))

z—21 z—z
By using I’Hopital’s rule we find
(z—1)(z—z))]

e2in/5 _

lim f(z)(z — z1)

2 T IE - sy 5(eA)
2/5(Q2/5 1) ehin/5 _ g2in/5
5 e2in o 5
and also
' eMm/5 1 o8im/5 _ oin/5
ZIE?Z f(z)(z —z) = 5(efm5)T 5
Therefore

z—1 2i . . . .
(Jrj 5—] dz = ? (e4m/5 o e217'(/5 + e8m/5 . e4m/5>
y& —

_ Z%T (_ e2im/5 | efzm/s)

= —Z%T 2i sin(27t/5) = L%TC sin(27t/5).



Moreover, if z € y;, then by using the ML inequality we obtain

1 1
J f(Z)dZISJ' |f(Z)|dz:J 25 < 7R max 25
v v MER x|
R+1
S”RRs—t]—)O» as R — oo.
Thus
=g dz—| f(z)dz) = - sin(27/5).
JOOX5—1 x RL%(C‘[Jyﬁ_] Z Lz (z) Z) 5 sin(27t/5)
3) Consider
#eizzdz)
Y
where y =y Uy, Uys,
N
REwim
’
L '

Lo

vi={z:z=x+10, 0 < x < R},
v2={z:z=Re" 0<0 < m/4},
v;=1{z:z=te"™* t € (R,0].

. fo2 . . .
Since e'*" is holomorphic we obtain

3[7 el dZ:J el dz“‘J el dz+J e dz=1,+1,— 13 =0.
h% Y1 Y2

V3
Note that

R 2 R /42 s 1T+1 R 2
I :J e™ dx and 13=J elle™ 7 oin/4 gt — J e v dt.
0 0 V2
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Now,
5,2 7-[/4 'RZ i20 i0
Il = J etz dz’:” eRe™ Ri ol d@’
Y2 0
/4 /4
<R J eiRZ(cosze-HsinZG)} a0 = R J e—RZsin20 4o
0 0
It is known that sin 20 > 40 /7t (show this) and therefore
7-[/4 R249 7T RZ
!IzISRJ e M= —(1-e®) =0, R— 0.
0 4R
Therefore
(o] R . R .
) . 1 1
J e”‘z dx = lim J elXz dx = lim 13 = lim Tt J eftz dt = M
0 R—oo 0 R—oo R—oo \/z 0 2\/2

where we used [5° e dt = /71/2.

Finally comparing real parts we obtain

J cos(x?) dx = \/7/8.
0

4) On the circle |z| = 3/2, |2°| = 243/32 and |15z + 1| > 15|z| — 1 = 21.5.
Thus |15z + 1] > |z]°. Hence there is no zero of the polynomial on the
circle. If we now denote by f(z) = 15z + 1 and by g(z) = 2z°, then by
Rouche’s Theorem we have N(f 4+ g) = N(f) inside |z| = 3/2. Since the
equation f(z) = 15z + 1 = 0 has one solution zy = —1/15, we conclude
that z° + 15z + 1 has one zero inside the circle |z| < 3/2.

On the circle |z| = 2, |z°| = 32 and |15z + 1| < 15|z| + 1 = 31. Hence
there is no zero of the polynomial on the circle and by Rouche’s Theorem
N(z° + 15z + 1) = N(z°) = 5 inside |z| = 2. Thus we deduce that in the
annulus {z : 3/2 < 1zl < 2} there are four zeros.

5) Let us split the function w(z) = f(z)+g(z) = 2'° 4820323+ 22+ z+1
such that
f(z) =8z"° and g(z) =20 -3 +224+z+1.
Then for |z| = 1 we have
f(z)| =8 >7=12'%+ 32|+ |22 + |zl + 1> [2'° =323 + 22 + 2z 4+ 1].

Therefore the number of solutions of the equation w(z) = 0 inside the unit
disc coincides with the number of solutions of z'® = 0, namely 10.



6)
a) Let us consider the case z : |z| = 1 and split the function w(z) =
327 +82° +2°+22° + 1 as f(z) = 8z° and g(z) = 3z° +2° + 223+ 1. Then

f(z)| =8 >7 =132°| + 22| + 22°| + 1 > 132" + 22 + 222 + 1| = |g(2)|.

Therefore inside the unit disk there are 6 zeros of w.
b) Let us consider first the case z : |z| = 2. Denote f(z) = 3z’ and
g(z) = 82z° + 2> + 223 + 1. Then

1f(z)] =327 =1536 > 512+ 32+ 16+ 1 = 8|z°| + |2°| + 2|2°| + 1
> 828 +22 +223 4+ 1] = Ig(z).

Therefore there are 9 roots of the equation w(z) = 0 inside the disc |z| = 2.
Note that there are no roots of the equation w(z) = 0 on the circle |z| = 1.
Therefore we conclude that there are 3 roots of the equation w(z) = 0 in
annulus {z : 1 < |z| < 2}.

7) On the circle |z] = 1 we have |az"| = |a| and |e?| = e*® < e. Thus
laz™| > |e?|, |z| = 1. The function az™ — e* has no roots on |z| = 1 and no
poles. By Rouche’s Theorem, N(az" — e*) = N(az") = n.

8) Let us first prove that if [p(e®)| < 1, then p(z) = z". Indeed, consider
q(z) =z"p(1/z) =1+ an1z+ -+ aoz".
By using the maximum modulus principle we obtain

max |q(z)| = max |q(z)| = max|e™p(e | < 1,
lz[<1 z|=1 z|=1

where we also have used the assumption [p(e | < 1. This implies
an—1 :"':(1020

and thus p(z) = z™

9) Assume that such a function exists. Since it does not vanish we have
|(f(z))~'| = e < 1. However |f(0)| = 1 and therefore by the maximum
modulus principle we have that f is constant. The constant function cannot
satisfy [f(z)| = e?.

10) Consider the function g(z) = f(z)/z. Since f is holomorphic in D and
f(0) = 0, we conclude that g(z) is holomorphic in D.
Consider gin D, = {z: |z| < p}, where p < 1. By the maximum modulus
principle |g| has its maximum on the boundary v, = {z : |z| = p}. Since
If(z)] <1,z €D, we have

()]

1
9(z) =20 <=
g p p

, Vz € v,.
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Fixing z € D, C D and letting p — 1 we obtain |g(z)| < 1 and thus
If(z)| < |z| for any z € .



