
MATH50001 Problems Sheet 7
Solutions
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1b) Clearly

∆|f(z)|2 = ∆(u2 + v2)

= 2u(u ′′
xx + u

′′
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′′
xx + v

′′
yy) + 2((u

′
x)
2 + (v ′x)

2 + (u ′
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2).

Since f is holomorphic we have

∆u = u ′′
xx + u

′′
yy = 0 and ∆v = v ′′xx + v

′′
yy = 0.

Besides using the Cauchy-Riemann equations u ′
x = v ′y and u ′

y = −v ′x we
find
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)∣∣∣2 = 4 |2∂u/∂z|2 = 4 |f ′z(z)|2.
1c) It follows from the proof of 1.b and the Cauchy-Riemann equations that

|f ′(z)|2 = (u ′
x)
2 + (u ′

y)
2 = u ′

x v
′
y − u

′
y v

′
x = det

(
u ′
x v ′x
u ′
y v ′y

)
.

2. Harmonic conjugates.

a) For u = x3 − 3xy2 − 2y we have u ′
x = 3x2 − 3y2, u ′′

xx = 6x and
u ′
y = −6xy− 2, u ′′

yy = −6x. Thus we have

u ′′
xx + u

′′
yy = 6x− 6x = 0

and it shows that u is harmonic.

Cauchy-Riemann equations imply

v ′y = u
′
x = 3x

2 − 3y2.

Integrating the latter w.r.t. y we find

v = 3x2y− y3 + F(x),
1
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and differentiating it w.r.t. x we have

vx = 6xy+ F ′(x) = −u ′
y = 6xy+ 2.

So F ′(x) = 2 and F(x) = 2x+ c, c ∈ R. This implies

v = 3x2y− y3 + 2x+ c,

f = u+ iv = x3 − 3xy2 − 2y+ 3ix2y− iy3 + 2ix+ ic

= (x+ iy)3 + 2i(x+ iy) + ic

or f(z) = z3 + 2iz+ ic.

b) If u = x− xy, then u ′′
xx = 0, u

′′
yy = 0, and thus u is harmonic.

Using the Cauchy-Riemann equations we find v ′y = u ′
x = 1 − y and inte-

grating this w.r.t. y we obtain

v = y− y2/2+ F(x).

Differentiating the latter w.r.t. x we arrive at

v ′x = F
′(x) = −u ′

y = x

and therefore F(x) = x2/2+ c, v = y− y2/2+ x2/2+ c;

f = u+ iv = x− xy+ iy+ i
x2

2
− i
y2

2
+ ic = (x+ iy) + i

(x+ iy)2

2
+ ic

or f = z+ iz2/2+ ic, c ∈ R.

c) For any (x, y) ∈ R2

∆u = u ′′
xx + u

′′
yy = (ex cosy (x+ 1)) ′x − (yex siny) ′x
+ (xex (− siny)) ′y − (ex(siny+ y cosy)) ′y
= ex cosy (x+ 1) + ex cosy− yex siny

− xex cosy− ex(cosy+ cosy− y siny) = 0.

Using the C-R equation u ′
x = v

′
y and integrating by parts we derive

v =

∫
u ′
x dy =

∫
(ex cosy (x+ 1) − y ex siny) dy

= ex siny (x+ 1) + yex cosy−

∫
ex cosydy

= ex siny (x+ 1) + yex cosy− ex siny+ C(x).

The second C-R equation vx = −u ′
y gives

ex siny (x+ 1) + ex siny+ yex cosy− ex siny+ C ′(x)

= xex siny+ ex(siny+ y cosy).

This implies C ′(x) = 0 and thus C(x) = c = const ∈ R.
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Finally we obtain

v(x, y) = xex siny+ yex cosy+ c.

Moreover,

f(z) = u+ iv = xex cosy− yex siny+ i (xex siny+ yex cosy+ c)

= (x+ iy) ex(cosy+ i siny) + ic = (x+ iy) ex+iy + ic = z ez + ic,

where c ∈ R. Then the equation

f(iπ) = iπeiπ + ic = −iπ+ ic = 0 =⇒ c = π.

Answer: f(z) = zex + iπ.

3. We have

0 = ∆g(x, y) = ∆|f(z)|2 = 4|f ′z(z)|
2 ⇒ f ′z(z) = 0⇒ u ′

x = v
′
x = u

′
y = v

′
y ≡ 0.

This implies f(z) ≡ constant.

4. Since u is harmonic we have ∆u = 0. Therefore

∆u2 = 2(∆u)u+ 2∇u · ∇u = 2|∇u|2 = 2
(
(u ′

x)
2 + (u ′

y)
2
)
≥ 0.

Moreover, since both u ′
x and u ′

y are harmonic we also have

∆2(u2) = 2∆|∇u|2 = 2
(
∆(u ′

x)
2 + ∆(u ′

y)
2
)
≥ 0.

5. We first check that u ′
x = v ′y. Indeed, since ϕ and ψ are harmonic we

obtain

u ′
x = ϕ

′′
xxϕ

′
y +ϕ

′
xϕ

′′
yx +ψ

′′
xxψ

′
y +ψ

′
xψ

′′
yx

= −ϕ ′′
yyϕ

′
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′
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′′
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′′
yyψ

′
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′
xψ

′′
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1
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y)
2
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y
+
1
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x)
2
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y
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1

2

(
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y)
2
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y
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1

2

(
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x)
2
) ′
y
= v ′y.

The second C-R equation says u ′
y = −v ′x and we have

u ′
y = ϕ

′′
xyϕ

′
y +ϕ

′
xϕ

′′
yy +ψ

′′
xyψ

′
y +ψ

′
xψ

′′
yy

= ϕ ′′
xyϕ

′
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′
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′′
xx +ψ

′′
xyψ

′
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′
xψ

′′
xx
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1
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2
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The the mapping w = f(z) must satisfy the Cross-Ratios Möbius Transfor-
mation. We have(

z− z1
z− z3

) (
z2 − z3
z2 − z1

)
=

(
w−w1
w−w3

) (
w2 −w3
w2 −w1

)
where z1 = 2, z2 = i and z3 = −1 and w1 = 2i, w2 = −, and w3 = −2i,
respectively. This implies(

z− 2

z+ 1

) (
i+ 1

i− 2

)
=

(
w− 2i

w+ 2i

) (
−2+ 2i

−2− 2i

)
,

(
z− 2

z+ 1

) (
−
1+ 3i

5

)
=

(
w− 2i

w+ 2i

)
(−i) ⇒
w =

(16− 2i) z+ (−2+ 4i)

(1− 2i) z− (2+ 11i)
.

6 ′)
The the mapping w = f(z) must satisfy the Cross-Ratios Möbius Transfor-
mation. We have(

z− z1
z− z3

) (
z2 − z3
z2 − z1

)
=

(
w−w1
w−w3

) (
w2 −w3
w2 −w1

)
where z1 = 2, z2 = 1 + i and z3 = 0 and w1 = 1, w2 = i, and w3 = −i,
respectively. This implies(

z− 2

z

) (
1+ i

1+ i− 2

)
=

(
w− 1

w+ i

) (
i− (−i)

i− 1

)
,

z− 2

z
(−i) =

w− 1

w+ i

2i

i− 1
, ⇒ z− 2

z
=
w− 1

w+ i
(1+ i) ⇒

(z−2)(w+i) = z(1+i) (w−1) ⇒ w(z−2−z−iz) = −z(1+i)−i(z−2)

Finally we have

w =
(1+ 2i)z− 2i

iz+ 2
.

7. We first find where f maps the boundary of the set Im z > 0. It is enough
to check it with three points, for example, z1 = −1, z2 = 0, z3 = 1. Such
points map to

w1 =
−1− i

−1+ i
= i, w2 = −1, w1 =

1− i

1+ i
= −i.
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This implies that the real line Im z = 0 maps onto the unit circle |w| = 1.
Now we only need to find out if the image of Im z > 0 is w : |w| < 1 or
w : |w| > 1. Clearly if we take w = i we obtain

f(i) = 0.

Therefore,Ω = {w ∈ : |w| < 1}.

8. Let

w = f(z) =
az+ b

cz+ d
.

Since the image of z1 = −2i equals w1 = 0 we can choose a = 1 and
b = 2i (not that all the coefficients a, b, c and d could be chosen up to
a multiplication by the same non-zero complex number). The from the
f(0) = 1 we obtain

2i

d
= 1 =⇒ d = 2i.

Finally, the condition f(−2) = i implies

−2+ 2i

−2c+ 2i
= i

which defines c = −1.

Answer: f(z) = z+2i
−z+2i

. The points z1 = −2i, z2 = −2 and z3 = 0 belong

to the circle
C1 = {z : |z+ 1+ i| =

√
2}

oriented anticlockwise. The same is true for the points w1 = 0, w2 = i and
w3 = 1 that are lying on the circle

C2 =

{
z :

∣∣∣∣z− 1

2
−
i

2

∣∣∣∣ = 1√
2

}
.

which is also oriented anticlockwise. This implies that the D1 maps onto
D2.
Alternatively, in order to show that the D1 maps inside D2 we can, for
example, take z = −1− i whose image is 1

5
+ i 2

5
∈ D2.

9. Let z1 = −2, z2 = −1− i and z3 = 0 onto the points w1 = −1, w2 = 0
and w3 = 1.
If w = f(z) is a Möbius transformation that maps the distinct points
(z1, z2, z3) into the distinct points (w1, w2, w3) respectively, then(

z− z1
z− z3

) (
z2 − z3
z2 − z1

)
=

(
w−w1
w−w3

) (
w2 −w3
w2 −w1

)
,
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for all z. Therefore, since z1 = −2, z2 = −1− i and z3 = 0 onto the points
w1 = −1, w2 = 0 and w3 = 1

z− (−2)

z− 0
· −1− i− 0
−1− (−2)

=
w− (−1)

w− 1
· 0− 1

0− (−1)
,

z+ 2

z
· −1− i
1− i

=
w+ 1

1−w
.

Since
−1− i

1− i
=
1

i
we have

z+ 2

i z
=
w+ 1

1−w
.

(z+ 2)(1−w) = iz(w+ 1); =⇒ z+ 2− zw− 2w = izw+ iz.

Finally

=⇒ w(iz+ z+ 2) = z+ 2− iz; =⇒ w =
z(1− i) + 2

z(1+ i) + 2
.

There are two possibilities to check that this transformation maps the disk
|z+ 1| < 1 onto the upper half plane.

1. The points z1 = −2, z2 = −1 − i and z3 = 0 that belong to the circle
|z + 1| = 1, have their images on the real w1 = −1, w2 = 0 and w3 = 1,
respectively. Because both ordered triple of of z-points and w-points have
anticlockwise orientation we obtain that the disk |z+ 1| < 1 onto the upper
half plane.

2. The transformation f maps the point z0 = −1 (that is inside the disc
|z+ 1| = 1) to T(−1) = w0 = i ∈ {z : Im z > 0}.

10. Let f(z) = zπ/α. Then{
f(reiθ) : r > 0, 0 < θ < α

}
=
{
rπ/α eiθπ/α : r > 0, 0 < θ < α

}
=
{
ρ eiϕ : ρ > 0, 0 < ϕ < π

}
.
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11. First transform the sector onto the upper half-plane {z : Im z > 0} using
z → z4. Then find a Möbius transformation mapping the half-plane to the
disc. This is not unique, but one way is to map 0 (on the half-plane) to
−1 (on the circle), and to map the inverse points i and −i relative to the
half-plane to the inverse points 1 and ∞ relative to the circle. We obtain
the Möbius transformation z → (3z − i)/(z + i). The required conformal
mapping is

w = f(z) =
3z4 − i

z4 + i
.


