MATH50001 - Problems Sheet 7 2021

1. a) Compute formally

$$4rac{\partial}{\partial z}rac{\partial}{\partial ar{z}}=4rac{\partial}{\partialar{z}}rac{\partial}{\partial z}=\Delta,$$

where $\Delta \phi(x,y) = \phi_{xx}''(x,y) + \phi_{yy}''(x,y).$ b) Show that if f is holomorphic, then

$$\Delta |f(z)|^2 = 4|f'_z(z)|^2.$$

c) Prove that if f = u + iv is holomorphic then

$$|\mathbf{f}'(z)|^2 = \det \begin{pmatrix} \mathbf{u}'_x & \mathbf{v}'_x \\ \mathbf{u}'_y & \mathbf{v}'_y \end{pmatrix}$$

2. Harmonic conjugates:

Show that the following functions u are harmonic and find their corresponding harmonic conjugate v and holomorphic f = u + iv:

a)
$$u(x, y) = x^3 - 3xy^2 - 2y$$
.

b) u(x, y) = x - xy.

c) Let $u(x, y) = xe^x \cos y - ye^x \sin y$. Find the holomorphic function f(z)(as functions of z) with the real part $u = xe^x \cos y - ye^x \sin y$ and such that $f(i\pi) = 0.$

3.* Let f be holomorphic in an open connected set Ω . Consider

$$g(x,y) = |f(x+iy)|^2, \quad x+iy \in \Omega.$$

Show that if g is harmonic in Ω then f is a constant function.

4.* Show that if u(x, y) is a harmonic real valued function, then $\Delta(\mathfrak{u}^2) \geq 0$ and $\Delta^2(\mathfrak{u}^2) = \Delta(\Delta(\mathfrak{u}^2)) \geq 0.$

5. Show that if $\varphi(x, y)$ and $\psi(x, y)$ are harmonic, then u and v defined by $u(x,y) = \phi'_x(x,y) \phi'_u(x,y) + \psi'_x(x,y) \psi'_u(x,y)$

and

$$\nu(\mathbf{x},\mathbf{y}) = \frac{1}{2} \left(\left(\varphi_{\mathbf{x}}'(\mathbf{x},\mathbf{y}) \right)^2 + \left(\psi_{\mathbf{x}}'(\mathbf{x},\mathbf{y}) \right)^2 - \left(\varphi_{\mathbf{y}}'(\mathbf{x},\mathbf{y}) \right)^2 - \left(\psi_{\mathbf{y}}'(\mathbf{x},\mathbf{y}) \right)^2 \right)$$

satisfy the Cauchy-Riemann equations.

6. Find a Möbius transformation that takes the points $z_1 = 2$, $z_2 = i$ and $z_3 = -1$ onto the given points $w_1 = 2i$, $w_2 = -2$, and $w_3 = -2i$, respectively.

6'. Find a Möbius transformation that takes the points $z_1 = 2$, $z_2 = 1+i$ and $z_3 = 0$ onto the given points $w_1 = 1$, $w_2 = i$, and $w_3 = -i$, respectively.

7. Let $f : \{z \in \mathbb{C} : \operatorname{Im} z > 0\} \to \Omega$, such that

$$f(z) = \frac{z - i}{z + i}$$

Describe Ω .

8. Find a Möbius transformation w = f(z) such that the points

$$f(-2i) = 0,$$
 $f(-2) = i,$ $f(0) = 1.$

Show that

$$D_1 = \{z : |z + 1 + i| < \sqrt{2}\}$$

maps onto

$$\mathsf{D}_2 = \left\{ z: \left| z - \frac{1}{2} - \frac{\mathfrak{i}}{2} \right| < \frac{1}{\sqrt{2}} \right\}.$$

9. Find the Möbits transformation w = f(z) that maps the points $z_1 = -2$, $z_2 = -1 - i$ and $z_3 = 0$ onto the points $w_1 = -1$, $w_2 = 0$ and $w_3 = 1$ respectively. Show that this transformation maps the disk |z + 1| < 1 onto the upper half plane.

10. Let $\alpha \in (0, \pi)$. Find a transformation conformal in

 $\{r e^{i\theta}: r > 0, -\pi < \theta < \pi\}$ that maps the sector $\{r e^{i\theta}: r > 0, 0 < \theta < \alpha\}$ onto the half-plane $\{w: \operatorname{Im} w > 0\}.$

11. Find a conformal mapping that transforms the sector $\{z : 0 < \arg z < \pi/4\}$ onto the disc $\{w : |w - 1| < 2\}$.