GROUPS AND RINGS 2021. PROBLEM SHEET 1

QUESTIONS BY ALEXEI N. SKOROBOGATOV

1. Determine the groups $\operatorname{Aut}(\mathbb{Z})$ and $\operatorname{Aut}(\mathbb{Z}/n)$. (Hint: $\operatorname{Aut}(G)$ sends a generator of a cyclic group to another generator. In the second question you can start with the case when n is a prime number.)

2. (a) In lectures we proved that conjugations by the elements of G form a subgroup of $\operatorname{Aut}(G)$. It is denoted by $\operatorname{Inn}(G)$ and is called the subgroup of *inner* automorphisms of G. Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.

(b) Determine $Inn(S_3)$ and $Inn(S_4)$.

3. Let $H \subset G$ be a subgroup.

(a) Prove that if gH = Hg for every $g \in G$, then H is a normal subgroup.

(b) Recall that if the number of cosets $G/H = \{gH | g \in G\}$ is finite, then this number is called the *index* of H in G. Prove that every subgroup of index 2 is normal. Give an example of an index 3 subgroup which is not normal.

4. List all subgroups of the following groups and determine which of them are normal. For each normal subgroup describe the quotient group.

 \mathbb{Z} , C_n (the cyclic group of order $n \ge 2$), S_3 , D_8 (the dihedral group of order 8).

5. Let G be a group with centre Z(G) such that the quotient G/Z(G) is a cyclic group. Prove that G is abelian.

6. Let $G = A \times B$ be the product of groups A and B. In lectures we identified A and B with their images in G under the natural injective maps $i_A(a) = (a, e_B)$ and $i_B(b) = (e_A, b)$.

(a) Prove that $G/A \cong B$ and $G/B \cong A$.

(b) Let $A_1 \subset A$ and $B_1 \subset B$ be normal subgroups. Prove that $A_1 \times B_1$ is a normal subgroup of G. Prove that $G/(A_1 \times B_1) \cong (A/A_1) \times (B/B_1)$.

(c) Prove that $Z(A \times B) = Z(A) \times Z(B)$.

7. Prove that every subgroup of a group G that contains [G, G] is normal in G.

8. Describe all pairs of positive integers (m, n) that $C_{mn} \cong C_m \times C_n$.

Date: October 10, 2021.