GROUPS AND RINGS - PROBLEM SHEET 2
Solutions

1. We prove the following facts.

(a) forall k€ {1,2,3,...,n}: (kk+1)€((12),(1234... n));
(b) for all k € {1,2,3,...,n}: (1k)€((12),(1234... n));
(c) for all a,b € {1,2,3,...,n}: (ab) € ((1 2),(1234... n)).

For (a) we use induction. The base case is (1 2) € ((12),(123... n)).
If we suppose that (kk+1) € ((12),(1234... n)), then we have

(1234...n)(kk+1)1234...n) ' =(k+1k+2).

For (b) we use induction. The base caseis (1 2) € ((12),(123... n)).
If we suppose that (1 k) € ((12),(1234... n)), then we have

(kk+1D)(1k)(kk+1) =1 k+1).

For (c) we notice that (1 a)(1b)(1 a) = (ab).

Therefore, since every permutation is a product of cycles and every
cycle is a product of transpositions, we have that S, is generated by
(12)and (1234... n).

2. Let T be the set of 3-cycles, and let n > 3. Every 3-cycle is an even
permutation, therefore it belongs to A,, and (T') C A,,. Conversely,
an element of A, is a product of an even number of transpositions.
Let o and 7 be two transpositions; if o and 7 are disjoint (i.e. their
supports are disjoint sets), then we have o = (a b), 7 = (¢ d), with a,
b, ¢, d pairwise distinct, and o7 = (c a d)(a b ¢) € (T'). Otherwise,
if o and 7 are not disjoint, we have ¢ = 7 and o7 = 1, or 0 = (a b),

= (bc)and o7 = (bca) € (T). In any case o € (T, therefore a
product of an even number of transpositions belongs to (T'), so that
Ap, <(T) and A, = (T).



3. Suppose that G has no elements of order 2. Then for any g € G\ {1}

we have g # ¢g~'. Thus, pairing each non-trivial element with its

inverse, we get |G| = 1 + 2n for some n € N, which is a contradiction.

4. Consider the matrices (our A is the opposite of the one given in the
Problem Sheet):

a=(19) m=(5 4

By computing the powers of A

s (-1 0 5 (0 1 s (10
e=(o 2) = (Gg) =6,

we see that A has order 4. Similarly we compute

s (-1 -1 5 (10
B_<1 o) =0 1)

and so the order of B is 3. Finally we compute

11
as= ().

which has infinite order, as for £ > 1

(AB)F = (é ’f) .

This cannot happen in an abelian group. If a and b are of finite order
and commute, then the order of ab divides the least common multiple
of o(a) and o(b) (prove it!).

5. (a) Let Z—i, Z—;, ce Z—Z rational numbers (7, s; € Z, s; # 0). Each % is
of the form k; - ﬁ

Sn?
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This proves every finitely generated subgroup of the additive group
Q is cyclic. Therefore, if Q were finitely generated, then it would be
cyclic, say

where k; = 17,8152+ - Si—1Si+1 - - - Sn. Therefore,



for some integer m. But ﬁ ¢ <%>, therefore Q cannot be finitely
generated.

(b) Suppose on the contrary that the multiplicative group of non-zero
rational numbers is finitely generated and let

a;
ry =
b;
be the generators for i = 1,...,n, where a;, b; are integers.

Then every non-zero rational number r can be written as
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for some integers ci,...c,. Let p be a prime number that does not
divide by - - - b,, and consider r = %. Then we have

1 m
p_b?‘--bf{l

for some integer m. Then we have
pm = b{' - bir

and this implies that p divides b; - - - b,, which contradicts our choice
of the prime number p.

(c) We use the following result, whose prove is left as an exercise.
If G is a group and H is a normal subgroup of G such that
both H and the quotient group G/H are finitely generated,
then G is also finitely generated.

The group (Z,+) is finitely generated, as it is cyclic. If Q/Z were
finitely generated, then (Q,+) would be finitely generated, which we
just showed is not true.

(d) Let G be the group in the question. We show that every finitely
generated subgroup of G is proper. Let H < G be finitely generated
by a1/2%,...,a,/2°". Then the denominators of the elements of H
are all powers of 2 of exponent at most m = max(ey,...e,). Thus
1/2m+1 ¢ H and H is proper.

. Let G be a non-cyclic group of order 4. Then 22 = 1 for all z € G,
which implies (zy)(xy) = 1 for all z,y € G. Multiply on the right by
yx to get xy = yx, so that G = (x) (y) = Ca x Cs.



7. G is isomorphic to a product of cyclic groups whose orders are powers
of p, say G = [[;_; Cpni, where n = nq + --- +n,. We can write
m =my+ -+ m,, where m; < n; for i = 1,...r. It is enough to
prove that each C,n; contains a subgroup of order p™i, because then
the product of these subgroups is a subgroup of G of order p”. Let
then (g) = Cpn, and let 1 < m < n. The element gP" " generates a
(cyclic) subgroup of order p™, as wanted.

8. By the primary decomposition of a finite abelian group, the number
of isomorphism classes of abelian groups of order p” is equal to the
number of partitions of n. For n up to 5 this is as listed in the following
table, and can be seen by listing all partitions.

n  isomorphism classes

1 1
2 2
3 3
4 5
5 7
For n = 4 we have
1+14+1+1
24+1+1
2+2
341
4
Forn=25
1+1+1+1+1
241+1+1
24+2+1
3+2
441
5



9. We first work out the conjugacy classes of A; and their orders. The
representatives of the cycle types of even permutations can be taken
to be

1, (123), (12345) and (12)(34).

Recall that the number of conjugates of an element s of a group G
is the index |G : Cg(s)| of the centraliser Cg(s). The centralisers of
3-cycles and 5-cycles are as follows:

Ca((123)=((123)) and Ca ((12345))=((12345)).

These groups have orders 3 and 5 (index 20 and 12), respectively, so
there are 20 distinct conjugates of (1 2 3) and 12 distinct conjugates of
(12345)in As. Since there are a total of twenty 3-cycles in S5 and
all of these lie in A5, we see that all twenty 3-cycles are conjugate
in A5.

There are a total of twenty-four 5-cycles in As but only 12 distinct
conjugates of the 5-cycle (1 2 3 4 5). Thus some 5-cycle o in not
conjugate to (1234 5) in A5, and we see that o also has 12 distinct
conjugates in As, hence the 5-cycles lie in two conjugacy classes
in As, each of which has 12 elements.

Since the 3-cycles and the 5-cycles account for all non-identity ele-
ments of odd order, the 15 remaining non-identity elements of As
must have order 2 and therefore are double transpositions. It is easy
to see that (1 2)(3 4) commutes with (1 3)(2 4) but does not com-
mute with any non-identity element of odd order in As. It follows
that [C4,((12)(34))] =4. Thus (1 2)(3 4) has 15 distinct conjugates
in As, hence all 15 elements of order 2 in A5 are conjugate to
(12)(34).

In summary, the conjugacy classes of As have orders 1, 15, 20, 12 and
12. Now, suppose H were a normal subgroup of As. Then H would
be a union of conjugacy classes of As. Then the order of H would be
both a divisor of 60 (the order of As) and the sum of some collection
of the integers {1,12,12,15,20} (the sizes of the conjugacy classes of
As). A quick check shows that the only possibilities are |H| = 1 or
|H| = 60, so that A5 has no proper, non-trivial normal subgroups.



