
GROUPS AND RINGS - PROBLEM SHEET 2

Solutions

1. We prove the following facts.

(a) for all k ∈ {1, 2, 3, . . . , n}: (k k + 1) ∈ 〈(1 2), (1 2 3 4 . . . n)〉;
(b) for all k ∈ {1, 2, 3, . . . , n}: (1 k) ∈ 〈(1 2), (1 2 3 4 . . . n)〉;
(c) for all a, b ∈ {1, 2, 3, . . . , n}: (a b) ∈ 〈(1 2), (1 2 3 4 . . . n)〉.

For (a) we use induction. The base case is (1 2) ∈ 〈(1 2), (1 2 3 . . . n)〉.
If we suppose that (k k + 1) ∈ 〈(1 2), (1 2 3 4 . . . n)〉, then we have

(1 2 3 4 . . . n)(k k + 1)(1 2 3 4 . . . n)−1 = (k + 1 k + 2).

For (b) we use induction. The base case is (1 2) ∈ 〈(1 2), (1 2 3 . . . n)〉.
If we suppose that (1 k) ∈ 〈(1 2), (1 2 3 4 . . . n)〉, then we have

(k k + 1)(1 k)(k k + 1)−1 = (1 k + 1).

For (c) we notice that (1 a)(1 b)(1 a) = (a b).
Therefore, since every permutation is a product of cycles and every
cycle is a product of transpositions, we have that Sn is generated by
(1 2) and (1 2 3 4 . . . n).

2. Let T be the set of 3-cycles, and let n ≥ 3. Every 3-cycle is an even
permutation, therefore it belongs to An, and 〈T 〉 ⊆ An. Conversely,
an element of An is a product of an even number of transpositions.
Let σ and τ be two transpositions; if σ and τ are disjoint (i.e. their
supports are disjoint sets), then we have σ = (a b), τ = (c d), with a,
b, c, d pairwise distinct, and στ = (c a d)(a b c) ∈ 〈T 〉. Otherwise,
if σ and τ are not disjoint, we have σ = τ and στ = 1, or σ = (a b),
τ = (b c) and στ = (b c a) ∈ 〈T 〉. In any case στ ∈ 〈T 〉, therefore a
product of an even number of transpositions belongs to 〈T 〉, so that
An ≤ 〈T 〉 and An = 〈T 〉.
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3. Suppose that G has no elements of order 2. Then for any g ∈ Gr {1}
we have g 6= g−1. Thus, pairing each non-trivial element with its
inverse, we get |G| = 1 + 2n for some n ∈ N, which is a contradiction.

4. Consider the matrices (our A is the opposite of the one given in the
Problem Sheet):

A =

(
0 −1
1 0

)
, B =

(
0 1
−1 −1

)
.

By computing the powers of A

A2 =

(
−1 0
0 −1

)
, A3 =

(
0 1
−1 0

)
, A4 =

(
1 0
0 1

)
,

we see that A has order 4. Similarly we compute

B2 =

(
−1 −1
1 0

)
, B3 =

(
1 0
0 1

)
,

and so the order of B is 3. Finally we compute

AB =

(
1 1
0 1

)
,

which has infinite order, as for k ≥ 1

(AB)k =

(
1 k
0 1

)
.

This cannot happen in an abelian group. If a and b are of finite order
and commute, then the order of ab divides the least common multiple
of o(a) and o(b) (prove it!).

5. (a) Let r1
s1
, r2s2 , . . . ,

rn
sn

rational numbers (ri, si ∈ Z, si 6= 0). Each ri
si

is

of the form ki · 1
s1s2···sn , where ki = ris1s2 · · · si−1si+1 · · · sn. Therefore,〈

r1
s1
,
r2
s2
, . . . ,

rn
sn

〉
⊆
〈

1

s1s2 · · · sn

〉
.

This proves every finitely generated subgroup of the additive group
Q is cyclic. Therefore, if Q were finitely generated, then it would be
cyclic, say

Q =

〈
1

m

〉
2



for some integer m. But 1
2m /∈

〈
1
m

〉
, therefore Q cannot be finitely

generated.

(b) Suppose on the contrary that the multiplicative group of non-zero
rational numbers is finitely generated and let

ri =
ai
bi

be the generators for i = 1, . . . , n, where ai, bi are integers.
Then every non-zero rational number r can be written as

r = rc11 · · · r
cn
n =

ac11 · · · acnn
bc11 · · · b

cn
n

for some integers c1, . . . cn. Let p be a prime number that does not
divide b1 · · · bn, and consider r = 1

p . Then we have

1

p
=

m

bc11 · · · b
cn
n

for some integer m. Then we have

pm = bc11 · · · b
cn
n

and this implies that p divides b1 · · · bn, which contradicts our choice
of the prime number p.

(c) We use the following result, whose prove is left as an exercise.
If G is a group and H is a normal subgroup of G such that
both H and the quotient group G/H are finitely generated,
then G is also finitely generated.
The group (Z,+) is finitely generated, as it is cyclic. If Q/Z were
finitely generated, then (Q,+) would be finitely generated, which we
just showed is not true.

(d) Let G be the group in the question. We show that every finitely
generated subgroup of G is proper. Let H ≤ G be finitely generated
by a1/2

e1 , . . . , an/2
en . Then the denominators of the elements of H

are all powers of 2 of exponent at most m = max(e1, . . . en). Thus
1/2m+1 /∈ H and H is proper.

6. Let G be a non-cyclic group of order 4. Then x2 = 1 for all x ∈ G,
which implies (xy)(xy) = 1 for all x, y ∈ G. Multiply on the right by
yx to get xy = yx, so that G = 〈x〉 〈y〉 ∼= C2 × C2.
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7. G is isomorphic to a product of cyclic groups whose orders are powers
of p, say G ∼=

∏r
i=1Cpni , where n = n1 + · · · + nr. We can write

m = m1 + · · · + mr, where mi ≤ ni for i = 1, . . . r. It is enough to
prove that each Cpni contains a subgroup of order pmi , because then
the product of these subgroups is a subgroup of G of order pm. Let
then 〈g〉 ∼= Cpn , and let 1 ≤ m ≤ n. The element gp

n−m
generates a

(cyclic) subgroup of order pm, as wanted.

8. By the primary decomposition of a finite abelian group, the number
of isomorphism classes of abelian groups of order pn is equal to the
number of partitions of n. For n up to 5 this is as listed in the following
table, and can be seen by listing all partitions.

n isomorphism classes

1 1

2 2

3 3

4 5

5 7

For n = 4 we have

1 + 1 + 1 + 1

2 + 1 + 1

2 + 2

3 + 1

4

For n = 5

1 + 1 + 1 + 1 + 1

2 + 1 + 1 + 1

2 + 2 + 1

3 + 2

4 + 1

5
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9. We first work out the conjugacy classes of A5 and their orders. The
representatives of the cycle types of even permutations can be taken
to be

1, (1 2 3), (1 2 3 4 5) and (1 2)(3 4).

Recall that the number of conjugates of an element s of a group G
is the index |G : CG(s)| of the centraliser CG(s). The centralisers of
3-cycles and 5-cycles are as follows:

CA5((1 2 3)) = 〈(1 2 3)〉 and CA5((1 2 3 4 5)) = 〈(1 2 3 4 5)〉 .

These groups have orders 3 and 5 (index 20 and 12), respectively, so
there are 20 distinct conjugates of (1 2 3) and 12 distinct conjugates of
(1 2 3 4 5) in A5. Since there are a total of twenty 3-cycles in S5 and
all of these lie in A5, we see that all twenty 3-cycles are conjugate
in A5.

There are a total of twenty-four 5-cycles in A5 but only 12 distinct
conjugates of the 5-cycle (1 2 3 4 5). Thus some 5-cycle σ in not
conjugate to (1 2 3 4 5) in A5, and we see that σ also has 12 distinct
conjugates in A5, hence the 5-cycles lie in two conjugacy classes
in A5, each of which has 12 elements.

Since the 3-cycles and the 5-cycles account for all non-identity ele-
ments of odd order, the 15 remaining non-identity elements of A5

must have order 2 and therefore are double transpositions. It is easy
to see that (1 2)(3 4) commutes with (1 3)(2 4) but does not com-
mute with any non-identity element of odd order in A5. It follows
that |CA5((1 2)(3 4))| = 4. Thus (1 2)(3 4) has 15 distinct conjugates
in A5, hence all 15 elements of order 2 in A5 are conjugate to
(1 2)(3 4).

In summary, the conjugacy classes of A5 have orders 1, 15, 20, 12 and
12. Now, suppose H were a normal subgroup of A5. Then H would
be a union of conjugacy classes of A5. Then the order of H would be
both a divisor of 60 (the order of A5) and the sum of some collection
of the integers {1, 12, 12, 15, 20} (the sizes of the conjugacy classes of
A5). A quick check shows that the only possibilities are |H| = 1 or
|H| = 60, so that A5 has no proper, non-trivial normal subgroups.
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