
GROUPS AND RINGS, PROBLEM SHEET 3 SOLUTIONS

Question 1:

Conjugation preserves cycle shape in Sn, and any two elements of the same cycle
shape are conjugate by some element of Sn. Indeed take two permutations of the
same cycle shape in Sn. Write these elements in the same cycle order. For example
consider (12)(345) and (13)(425). We can construct the element g ∈ S5 which
conjugates one to the other as follows. Consider the permutation defined by the
following assignment:

(1 2) (3 4 5)
↓ ↓ ↓ ↓ ↓
(1 3) (4 2 5)

This is the permutation g = (1)(234)(5). One can check that g conjugates the first
element into the second. In general we can use this procedure to show any two
cycles of the same shape are conjugate.

Thus cardinality of a given conjugacy class can be determined by counting the
number of possible permutations of a fixed cycle shape.

Fix a given cycle shape. Let us count the number of possible elements x of that
cycle shape. To initially assign the n numbers we have n! possible choices.

For each i-cycle in x, we must divide by i since (for example) (1234) is the same
group element as (2341) and we have in general i ways of rearranging this i-cycle.
Let mi be the number of i-cycles in x. Since disjoint cycles commute, we also can
rearrange our mi i-cycles freely and there are mi! ways of doing this, so we must
also divide out by mi!. Thus we obtain

n!∏n
i=1 i

mimi!

possible choices of element x of our given cycle shape.

Question 2:

Notice that |V | = 4 and |S4| = 24. Thus if we could find a homorphism from S4

to a group of order 6, we could hope that V is the kernel of this homomorphism.
Since |S3| = 6, let’s look for a homomorphism S4 → S3.

Let x1, x2, x3, x4 be four variables and define three polynomials by

p1 = x1x2 + x3x4, p2 = x1x3 + x2x4, p3 = x1x4 + x2x3.

A permutation of {x1, x2, x3, x4} induces a permutation of the polynomials {p1, p2, p3}
and thus we obtain a homomorphism

f : S4 → S3.
1
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A permutation fixes each of p1, p2, p3 if and only if it is the identity or a product of
two 2-cycles. That is, V = ker f . Since V is the kernel of a group homomorphism,
it is a normal subgroup of S4. Since every non-identity element of V has order two,
it cannot be isomorphic to C4, so V ∼= C2 × C2.

(Note that for n ≥ 5, the only normal subgroup of Sn is An, so the case n = 4 with
V / S4 is quite exceptional.)

Every element of S4 acts trivially by conjugation on e ∈ V , so S4 · e = e and
(S4)e = S4. There is one other orbit consisting of the remaining three elements
of V . Indeed notice that conjugating (12)(34) by (1234) gives (14)(23) and by
(123) gives (13)(24). By the orbit-stabiliser theorem the stabiliser of any of these
elements must be order 24/3 = 8. The only subgroups of order 8 in S4 are D8 and
its two conjugacy subgroups.

Explicitly, take (for example) the stabiliser H < S4 of (12)(34). Then since V itself
is Abelian, (12)(34) is fixed by conjugation of any element of V , so V < H giving us
four elements. Also (12) and (34) clearly fix (12)(34). Since our stabiliser should be
a closed subgroup, we must also add in (13)(24)(12) = (1423) and (14)(23)(12) =
(1324) which completes our subgroup isomorphic to D8.

Question 3:

Taking a quotient G/H “shrinks the subgroup H to zero inside G,” so intuitively if
Gtors is the subgroup of all torsion elements, we expect that G/Gtors will have no
(non-identity) torsion elements.

Explicitly, if g+Gtors is torsion in G/Gtors, then n(g+Gtors) = ng+Gtors = Gtors.
Thus ng ∈ Gtors. But then there exists an m such that mng = 0, so (mn)g = 0
and g ∈ Gtors so g + Gtors = 0 in G/Gtors.

Question 4:

The easiest way to show two groups are not isomorphic is to compare their cardin-
alities, but Zn and Zm have the same cardinality (countably infinite). Intuitively
if n > m then Zn should have “more” elements than Zm.

Let us reduce to a statement about finite groups. Suppose Zn ∼= Zm. Then
Zn/2Zn ∼= Zm/2Zm. But Zn = Z× · × Z︸ ︷︷ ︸

n times

and in problem sheet 1 we saw that the

quotient of a product group by a product subgroup is the product of the quotients.
Thus Zn/2Zn ∼= (Z/2Z)n. This has 2n elements. On the other hand Zm/2Zm has
2m elements, so we can only have Zn ∼= Zm if n = m.

Question 5:

Intuition: a matrix A scales the unit parallelopiped in Rn into a new parallelopiped
of volume detA. If one restricts to the lattice Zn, then one expects that any
elements contained inside this new parallelopiped of volume detA will be missed
by AZn and will be non-zero in the quotient group Zn/AZn. There should be
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approximately detA of these elements, so we expect the quotient group to have
size |detA|.

Using Smith normal form we can reduce the problem to considering just a diagonal
matrix, which scales each coordinate separately. If Q ∈ GL(n,Z) is an invertible
matrix, then QZn = Zn, so AQZn = AZn. On the other hand if P ∈ GL(n,Z)
then the automorphism ϕ : x 7→ Px of Zn maps AZn isomorphically onto PAZn.
Thus

Zn/AZn ∼= PZn/PAZn = Zn/PAZn = Zn/PAQZn.

Since any A can be brought into diagonal form diag(a1, . . . , an) = PAQ over the
integers by invertible matrices P and Q, we have reduced to the case of diagonal
matrices.

In this case again we see that AZn is a product of subgroups aiZ < Z for each i,
and so

Zn/AZn ∼=
n∏

i=1

Z/aiZ

which has order |a1 · · · an| = detA.

Question 6:

Consider our element (a1, . . . , an) ∈ Zn. Let us write the subgroup H generated
by this element in the form hZn for some matrix h. Then similarly to the previous
question we can apply the Smith normal form to reduce to a simpler situation.

Let us take the matrix h as

h =

a1 0 · · · 0
...

...
. . .

...
an 0 · · · 0

 .

Note that we could have taken the numbers a1, . . . , an to lie in any column. Then
hZn = H.

This matrix has Smith normal form

h′ =


d 0 · · · 0

0 0 · · ·
...

...
. . .

...
0 0 · · · 0


where d = gcd(a1, . . . , an).

We have now reduced to the case of taking a quotient of Zn by the subgroup
generated by the element (d, 0, . . . , 0). This is the subgroup dZ × 0 × · · · × 0. By
problem sheet 1 we know that the quotient by a product subgroup is the product
of the quotients, so we have

Zn/H ∼= Zn/hZn ∼= Zn/h′Zn ∼= (Z/dZ)× Zn−1.
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Now we see that the rank of Zn/H is n− 1 and the torsion subgroup is Z/dZ.

Question 7:

Since every subgroup of a cyclic group is cyclic, if G contains a subgroup isomorphic
to Cp×Cp then G cannot be cyclic (since Cp×Cp isn’t because gcd(p, p) = p 6= 1).

Now suppose G is not cyclic. Since G is a finite Abelian group, it is isomorphic
to a direct product of cyclics groups of prime power order. Furthermore, since a
product of cyclic groups of order a, b with gcd(a, b) = 1 is itself cyclic, we must
have that there are two factors Cpk1 ×Cpk2 which are powers of the same prime p.
Then this product of cyclic groups contains a copy of Cp × Cp.

Question 8:

If S ⊂ G is finite and closed under group multiplication, then every element of S
has finite order and every power of it is contained in S. Let a ∈ S with order m.
Then am = e so am−1 = a−1. Thus S is also closed under taking inverses so it is a
subgroup.

This fails for infinite sets where elements can have infinite order. For example
N ⊂ Z is closed under addition but not taking inverses.

(Secretly what is being used here is that an injective function between finite sets
of the same size is always surjective and hence a bijection, this fact is not true for
infinite sets! Later you may use this same trick to prove that every finite integral
domain is a field.)


