GROUPS AND RINGS 2021. PROBLEM SHEET 4

QUESTIONS BY ALEXEI N. SKOROBOGATOV

1. Which of the following are rings? Which are integral domains?

- (1) The set of rationals a/b with $a, b \in \mathbb{Z}$ and b odd (usual $+, \times$).
- (2) The set of rationals a/b with $a, b \in \mathbb{Z}$ and b a power of 2 (usual +, ×).

(3) \mathbb{Z} , with new addition \oplus and multiplication \otimes defined by

$$m \oplus n = m + n + 2$$
 and $m \otimes n = mn + 2m + 2n + 2$.

2. Let R be a ring. Deduce directly from the axioms of a ring that for any $x, y \in R$ we have (-x)(-y) = xy.

3. Let $F = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$

- (1) Prove that F is a field.
- (2) Prove that \mathbb{Q} has exactly one subfield (namely \mathbb{Q} itself).
- (3) Prove that F has exactly two subfields.

4. Prove that \mathbb{Q} contains infinitely many subrings which are integral domains.

5. (Quaternions) Let \mathbb{H} be the set of 2×2 matrices

$$\mathbb{H} = \left\{ \left(\begin{array}{cc} z & w \\ -\overline{w} & \overline{z} \end{array} \right) : z, w \in \mathbb{C} \right\}.$$

Prove that \mathbb{H} is a division ring.

- 6. Prove that if F_1 and F_2 are subfields of a field K then $F_1 \cap F_2$ is a subfield of K.
- 7. Let I and J be ideals of a commutative ring R. Define

 $I + J = \{a + b : a \in I \text{ and } b \in J\}.$

Prove that I + J is an ideal of R.

- 8. Suppose that F is a finite field with p^n elements. Prove that $r^{p^n} = r$ for all $r \in F$.
- 9. Let R be a ring in which $x^2 = x$ for all $x \in R$. Prove that R is commutative.

Date: October 10, 2021.