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Question 1

rgrg
(a) A coset m + nZ has order n in Z/nZ if and only if it generates Z/nZ,

which means that 1+nZ = km+nZ for some k ∈ Z. This means that ∃k, l ∈ Z
such that km+ ln = 1, which is true if and only if (m,n) = 1.

(b) Let m+nZ ∈ Z/nZ. Then (m,n) = 1 iff ∃k, l ∈ Z such that km+ln = 1.
But km+ ln = 1 for some l ∈ Z if and only if (k + nZ)(m+ nZ) = km+ nZ =
1 + nZ.

(c) If p is a prime then (m, pk) = 1 if and only if p does not divide m.

|{m ∈ {1, 2, ..., pk − 1} : p ∤ m}| = |{1, ..., pk} \ {p, 2p, ..., (pk−1)p}|
= |{1, ..., pk}| − |{p, 2p, ..., (pk−1)p}|
= pk − pk−1

(d) We want to use part (a), and to do this we notice that if (m,n) = 1
then Cmn

∼= Cm ×Cn, so counting elements of order mn in Cmn is the same as
counting elements of order mn in Cm×Cn. In fact, an element (g, h) ∈ Cm×Cn

has order mn if and only if g has order m and h has order n. Indeed, if
ord(g) = m and ord(h) = n then ord ((g, h)) = lcm(m,n). But lcm(m,n) = mn
since (m,n) = 1. For the other direction, suppose that ord((g, h)) = mn but
(ord(g), ord(h)) ̸= (m,n). Then either ord(g) < m or ord(h) < n. But then
ord((g, h)) = lcm(ord(g), ord(h)) ≤ ord(g)ord(h) < mn, contradicition.

For the second part of part (d), write out n as its unique prime factorisation
n = pk1

1 pk2
2 ...pkm

m , where the order of the pis doesn’t matter, but each pi is
distinct. Since each of the prime power factors pki

i is coprime to the others, we
can apply the first part of the question inductively to get

φ(n) = φ(pk1
1 )φ(pk2

2 )...φ(pkm
m ).

Then we can apply part (c) to each factor to get

φ(n) = (pk1
1 − pk1−1

1 )(pk2
2 − pk2−1

2 )...(pkm
m − pkm−1

m ).

Taking the factor pki
i outside each of the brackets gives the desired expression.
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Question 2

We will use Question 1(a), and consider φ(δ) as the number of elements of order
δ in Cδ. We know by Lagrange’s Theorem that ord(x) divides d for all x ∈ Cd.

d = |Cd| =
∑
δ|d

|{x ∈ Cd : ord(x) = δ}|

=
∑
δ|d

|{x ∈ Cδ : ord(x) = δ}|

=
∑
δ|d

φ(δ).

To prove the second equality we need to show that every element of order δ in
Cd is contained in the unique subgroup H ⊂ Cd isomorphic to Cδ. To do this
you can show that H ∼= Cδ =⇒ H = {y d

δ : y ∈ Cd}, and that if x ∈ Cd has

order δ then x = y
d
δ for some generator y of Cd.

Question 3

Since xq−1 − 1 is a polynomial of degree q − 1, we know it has at most q − 1
roots. Any solution to the equation xq−1 = 1 must be in F×. In fact, since F
is a field of order q, we know that every nonzero element has a multiplicative
inverse so |F×| = q− 1. F× is a finite group of order q− 1 under multiplication
so by Lagrange’s Theorem every element of F× has order dividing q − 1. But
this is the same as saying xq−1 = 1 for all x ∈ F×.

Question 4

The idea is to use Question 3 by expressing xd − 1 in terms of xq−1 − 1. Since
d divides q − 1, xq−1 = (xd)n for some n, so

xq−1 − 1 = (xd)n − 1 = (xd − 1)((xd)(n−1) + (xd)(n−2) + ...+ xd + 1).

We know from Question 3 that this polynomial as exactly q−1 roots in F . The
number of roots of the two factors must sum to q−1. Since xd−1 is a polynomial
of degree d it has at most d roots in F . Since (xd)(n−1)+(xd)(n−2)+ ...+xd+1
is a polynomial of degree d(n− 1) = q − 1− d it has at most q − 1− d roots in
F , so xd − 1 has at least d roots in F . So xd − 1 has exactly d roots in F .

Question 5

We will follow the hint to use induction on d. The base case is d = 1. Clearly

|{x ∈ F× : x = 1}| = 1 = φ(1)

For the inductive step, suppose that

|{x ∈ F× : xk = 1}| = φ(k)
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for all k < d such that k|q − 1, where d|q − 1. By Question 2 we have

d =
∑
δ|d

φ(δ) = φ(d) +
∑

δ|d, δ<d

φ(δ)

but by Question 4 we also have

d = |{x ∈ F× : xd = 1}

=
∑
δ|d

|{x ∈ F× : ord(x) = δ}|

= |{x ∈ F× : ord(x) = d}|+
∑

δ|d, δ<d

|{x ∈ F× : ord(x) = δ}|.

Since we know by assumption that for all δ|d, δ < d that

|{x ∈ F× : ord(x) = δ}| = φ(δ),

we can equate the two sums over δ < d and be left with

|{x ∈ F× : ord(x) = d}| = φ(d).

Question 6

Apply Question 4 with d = q − 1. If F is a finite field of order q, then F× is a
finite group of order q − 1, where the operation is multiplication. It’s a cyclic
group if and only if it contains an element of order q − 1. By Question 4, the
number of elements of F× with order q − 1 is φ(q − 1). As stated in Question
1, φ(q − 1) ≥ 1, so there exists an element of order q − 1 in F×.

Question 7

Suppose n = 1. Then (F,+) is an abelian group of prime order, so must
be cyclic. Suppose n > 1. If (F,+) ∼= Z/pnZ as additive groups then by
distributivity F ∼= Z/pnZ as rings (i.e. the multiplication on F must be the
same as multiplication on Z/pnZ as well). But now from Question 1 parts (b)
and (c) we have

|(Z/pnZ)×| = pn − pn−1 < pn − 1

This implies that there is a nontrivial element of F which has no multiplicative
inverse. This contradicts F being a field. So (F,+) cannot be cyclic if n > 1.

Question 8

(a) We use the binomial theorem to get (x+ y)p =
∑p

i=0

(
p
i

)
xiyp−i. Note that

since p is prime, p divides
(
p
i

)
= p!

i!(p−i)! if and only if i ̸= p. Since k has

characteristic p, we know pz = z + ...+ z = 0 for all z ∈ k, where the sum is p
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copies of z, so
(
p
i

)
xiyp−i = 0 for all i ̸= p. Thus (x+ y)p = xp + yp. The second

part follows by induction: (x+ y)p
m

= ((x+ y)p)p
m−1

= (xp + yp)p
m−1

.
(b) Part (a) shows that the Frobenius map preserves addition on a field

of characteristic p, and since multiplication on fields is commutative, it clearly
preserves multiplication. So the Frobenius map is a homomorphism of rings. To
see that it is bijective on finite fields, note that k must have order pm, and so by
Question 3 every element of k× satisfies the equation xpm−1 = 1. Thus every
element of the whole field k satisfies xpm

= x, so composing the Frobenius map
m times gives the identity map on k. So the Frobenius map must be a bijection,
and thus an automorphism.

(c) The fixed points of the Frobenius map are the elements of F satisfying
xp − x = 0. From Question 3 we know that every one of the p elements of
the subfield Fp ⊂ F satisfies this equation. There are at most p roots of the
polynomial xp − x since it’s of degree p. So the elements of the subfield Fp are
all the fixed points of the Frobenius map.

Question 9

Suppose ϕ ∈ Aut(Q). Then ϕ(1) must be 1 to preserve the multiplicative
structure in Q. The additive structure is also preserved, so for any n ∈ Z ⊂ Q

ϕ(n) = ϕ(1 + 1 + ...+ 1) = ϕ(1) + ϕ(1) + ...+ ϕ(1) = 1 + 1 + ...+ 1 = n.

ϕ must preserve inverses, that is ϕ( 1n ) = ϕ(n)−1 = 1
n for all n ∈ Z. So for any

a
b ∈ Q,

ϕ
(a
b

)
= ϕ(a)ϕ

(
1

b

)
=

a

b
,

so ϕ ≡ idQ. We’ve proved that Aut(Q) is the trivial group.
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