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Question 1

(a) A coset m + nZ has order n in Z/nZ if and only if it generates Z/nZ,
which means that 14+ nZ = km + nZ for some k € Z. This means that 3k,l € Z
such that km + In = 1, which is true if and only if (m,n) = 1.

(b) Let m+nZ € Z/nZ. Then (m,n) = 1iff 3k,l € Z such that km—+in = 1.
But km + In =1 for some [ € Z if and only if (k4 nZ)(m + nZ) = km +nZ =
1+nZ.

(c) If p is a prime then (m,p*) = 1 if and only if p does not divide m.

H{m € {1,2, ---apk =1} pim}| = [{1, ""pk} \{p.2p, ..., (pk_l)pH

= {1 0"} = {p, 2, s (0" )}
—pF ket
(d) We want to use part (a), and to do this we notice that if (m,n) = 1
then C,,, = C,, x C}, so counting elements of order mn in C,,,, is the same as
counting elements of order mn in C,,, X C,,. In fact, an element (g, h) € C,, x Cy,
has order mn if and only if g has order m and h has order n. Indeed, if
ord(g) = m and ord(h) = n then ord ((g, h)) = lem(m,n). But lem(m,n) = mn
since (m,n) = 1. For the other direction, suppose that ord((g,h)) = mn but
(ord(g),ord(h)) # (m,n). Then either ord(g) < m or ord(h) < n. But then
ord((g, h)) = lem(ord(g),ord(h)) < ord(g)ord(h) < mn, contradicition.
For the second part of part (d), write out n as its unique prime factorisation
n = p]flpg?..pf,;”, where the order of the p;s doesn’t matter, but each p; is
distinct. Since each of the prime power factors pf is coprime to the others, we
can apply the first part of the question inductively to get

k k -
p(n) = o1 )p(D5?)-p (D)
Then we can apply part (c) to each factor to get

k ki—1y( ko — . -
¢(n) = (pi* —pi"* 1)(]922 —py’ 1)"'(pfn _pﬁ@ 1)-

Taking the factor pf outside each of the brackets gives the desired expression.



Question 2

We will use Question 1(a), and consider ¢(d) as the number of elements of order
0 in Cs5. We know by Lagrange’s Theorem that ord(x) divides d for all x € Cy.

d=1|Cql =) {x € Cy:ord(x) = 5}|
5|d

— Z {z € Cs : ord(z) = d}|

sld
=> ¢(0).

sld

To prove the second equality we need to show that every element of order § in
Cy is contained in the unique subgroup I—g C Cy isomorphic to Cs. To do this
you can show that H = Cs = H = {ys : y € Cy4}, and that if € Cy has

order ¢ then z = y% for some generator y of Cy.

Question 3

Since 297! — 1 is a polynomial of degree ¢ — 1, we know it has at most ¢ — 1
roots. Any solution to the equation £9~! = 1 must be in F*. In fact, since F'
is a field of order ¢, we know that every nonzero element has a multiplicative
inverse so |[F*| = ¢—1. F* is a finite group of order ¢ — 1 under multiplication
so by Lagrange’s Theorem every element of F'* has order dividing ¢ — 1. But
this is the same as saying z9~! =1 for all z € F*.

Question 4

The idea is to use Question 3 by expressing 2% — 1 in terms of 29-! — 1. Since
d divides ¢ — 1, 2971 = (z4)" for some n, so

2 1= (@) —1= (2% = 1))V + (@)D 4 4 2d+1).

We know from Question 3 that this polynomial as exactly ¢ — 1 roots in F'. The
number of roots of the two factors must sum to g—1. Since 2¢—1 is a polynomial
of degree d it has at most d roots in F. Since (x%)=1 4 (z4)("=2) 4 4?41
is a polynomial of degree d(n — 1) = ¢ — 1 — d it has at most ¢ — 1 — d roots in
F, so 2% — 1 has at least d roots in F. So % — 1 has exactly d roots in F.

Question 5

We will follow the hint to use induction on d. The base case is d = 1. Clearly
Hzxe F*:z=1}=1=¢(1)
For the inductive step, suppose that

{z e F*: xkzl}\:gp(k)



for all k < d such that k|g — 1, where d|¢ — 1. By Question 2 we have

d=> o0)=p(d) + Y o)

s|d dld, 5<d
but by Question 4 we also have
d=|{z e F*:z=1}
=> Hz e F*: ord(x) = 6}
s|d

=[{zeF*:od(@)=d}|+ > H{zeF*: ord(x) =25}
8|d, 6<d

Since we know by assumption that for all §|d,§ < d that
o € F*: ord(x) = 6} = (9),
we can equate the two sums over § < d and be left with

[{z € F* : ord(z) = d}| = ¢(d).

Question 6

Apply Question 4 with d = ¢ — 1. If F' is a finite field of order ¢, then F'* is a
finite group of order ¢ — 1, where the operation is multiplication. It’s a cyclic
group if and only if it contains an element of order ¢ — 1. By Question 4, the
number of elements of F* with order ¢ — 1 is ¢(q — 1). As stated in Question
1, ¢(¢ — 1) > 1, so there exists an element of order ¢ — 1 in F'*.

Question 7

Suppose n = 1. Then (F,+) is an abelian group of prime order, so must
be cyclic. Suppose n > 1. If (F,+) = Z/p"Z as additive groups then by
distributivity F' & Z/p"Z as rings (i.e. the multiplication on F' must be the
same as multiplication on Z/p"Z as well). But now from Question 1 parts (b)
and (c) we have

|(Z/an)><| _ pn _pn—l < pn -1
This implies that there is a nontrivial element of F' which has no multiplicative
inverse. This contradicts F' being a field. So (F,+) cannot be cyclic if n > 1.

Question 8

(a) We use the binomial theorem to get (z +y)? = Y% (?)a’y?~". Note that
since p is prime, p divides (¥) = i!(ppiii)l if and only if i # p. Since k has

characteristic p, we know pz = z+ ... + z = 0 for all z € k, where the sum is p



copies of z, so (’Z.’)xiyp_i =0 for all ¢ # p. Thus (z+y)? = 2P + y?. The second
part follows by induction: (z 4+ y)?" = ((z + y)P)?" " = (a? +y?)?"

(b) Part (a) shows that the Frobenius map preserves addition on a field
of characteristic p, and since multiplication on fields is commutative, it clearly
preserves multiplication. So the Frobenius map is a homomorphism of rings. To
see that it is bijective on finite fields, note that & must have order p™, and so by
Question 3 every element of kX satisfies the equation 2P»~! = 1. Thus every
element of the whole field k satisfies 2P = x, so composing the Frobenius map
m times gives the identity map on k. So the Frobenius map must be a bijection,
and thus an automorphism.

(c) The fixed points of the Frobenius map are the elements of F' satisfying
2P —x = 0. From Question 3 we know that every one of the p elements of
the subfield F,, C F satisfies this equation. There are at most p roots of the
polynomial zP — z since it’s of degree p. So the elements of the subfield I, are
all the fixed points of the Frobenius map.

Question 9

Suppose ¢ € Aut(Q). Then ¢(1) must be 1 to preserve the multiplicative
structure in Q. The additive structure is also preserved, so for any n € Z C Q

pn)=¢o(1+1+...+1)=0(1)+ (1) +...+0(1)=1+1+...+1=n.

¢ must preserve inverses, that is ¢(2) = ¢(n)~! = L for all n € Z. So for any

2cq,
6(5) = oo (3) =5

so ¢ = idg. We've proved that Aut(Q) is the trivial group.



