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Question 1

Let d < −1 be an odd negative integer.
(a) Clearly 2 is not an invertible element of the ring R := Z[

√
d] since its inverse 1

2 is
not in R. We have to show that if ab = 2 for a, b ∈ R then a or b is invertible in R.

Using the hint given in the question, consider the map φ : R → Z≥0 given by φ(m +

n
√
d) = m2 − n2d. It’s multiplicative - you can check that φ((m + n

√
d)(k + l

√
d)) =

φ(m + n
√
d)φ(k + l

√
d). Suppose for a contradiction that 2 = (m + n

√
d)(k + l

√
d) for

some n,m, k, l ∈ Z, where neither m + n
√
d nor k + l

√
d are invertible in R. Then, by the

multiplicative property of φ, we have φ(2) = 4 = (m2 − n2d)(k2 − l2d). Since both factors
are positive integers, they are either equal to 1 and 4 or both equal to 2. If m−n2d = 1,
then m+ n

√
d is invertible in R as (m+ n

√
d)(m− n

√
d) = 1. So m2 − n2d must equal 2.

m2 and −n2d are both positive integers, so either

1. m2 = 2 and −n2d = 0. Clearly this can’t be true since there’s no integer m that
squares to 2.

2. m2 = 0 and −n2d = 2. Since n2 is positive and can’t equal 2, we must have −d = 2.
This is a contradiction since d is odd.

3. m2 = 1 and −n2d = 1. Since n2 and −d are both positive integers, they must both
be 1. This is a contradiction since d < −1.

(b) Note a = 1−d
2 is an integer since d is odd. If R were a unique factorisation domain,

then since 2 · a is a factorisation of 1 − d in R, with 2 irreducible, any other factorisation
α · β of 1 − d must have either 2|α or 2|β. But clearly 2 does not divide either 1 −

√
d or

1 +
√
d.

Question 2

(a) R is clearly a subring of the field of complex numbers C, and there are no zero divisors
in C. Alternatively, we could use the multiplicative property of φ again. Suppose ∃x, y ∈ R
such that xy = 0. Then φ(xy) = φ(x)φ(y) = 0. But φ(x) and φ(y) are integers, so one of
them must be zero. φ(x) = a2 + b2 = 0 if and only if a = b = 0, i.e. x = 0.

(b) Suppose r ∈ Rx. Then ∃s ∈ R such that rs = 1. Then 1 = φ(rs) = φ(r)φ(s), so
φ(r) = φ(s) = 1 since they are both nonnegative integers whose product is 1.

(c) Clearly φ(x) = 0 iff x = 0 so φ is a function R → Z≥0 such that
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1. φ(xy) ≥ φ(x) for all x, y ∈ R.

Indeed, φ(xy) = φ(x)φ(y), and φ(y) ≥ 1.

2. ∀x, y ∈ R ∃q, r ∈ R such that x = qy + r and either r = 0 or φ(r) < φ(y).

To prove this, we’ll use the hint given in the question to approximate elements of Q(i)
by elements of R. The point is, to get the remainder r as ’small’ as possible (with
respect to φ), we need to get the quotient q a close enough approximation to x

y .

x
y is in Q(i) so can be written as u+vi, where u, v ∈ Q. So we need to pick q = m+ni
close enough to u+ vi such that

φ(r) = φ(x− qy) = φ(y)φ

(
x

y
− q

)
= φ(y)((u−m)2 + (v −m)2)

is smaller than φ(y). This can be achieved if (u −m)2 + (v −m)2 < 1. But we can
pick m ∈ (u− 1

2 , u+ 1
2 ) ∩ Z and n ∈ (v − 1

2 , v +
1
2 ) ∩ Z, and then

(u−m)2 + (v −m)2 <
1

4
+

1

4
< 1.

(d) Suppose that φ(r) = p some prime number and r = ab for some a, b ∈ R. Then
φ(r) = φ(a)φ(b) = p, and since p is prime one of φ(a) and φ(b) is p and the other is 1. but
in part (b) we showed that φ(a) = 1 if and only if a is a unit.

(e) Suppose for a contradiction that there are a, b ∈ R \ R× such that ab = p. Then
φ(a)φ(b) = φ(p) = p2. But since neither a nor b is a unit, neither φ(a) nor φ(b) can equal
1, so φ(a) = φ(b) = p since p is prime. But p ≡ 3 mod4 and you can show that the sum of
two squares is never congruent to 3 mod4. (Hint: show any square is congruent to either 0
or 1 mod4.)

Question 3

Question 3 is very similar to Question 2. Notice that φ is still the function that sends a
complex number z to the square of its modulus |z|2 = zz.

(a) R is a subring of the field C.
(b) φ is multiplicative and

r ∈ R× ⇐⇒ φ(r) = 1

still holds by the same argument as in Question 2(b). So the invertible elements of R are
those with modulus 1 when considered as complex numbers. If you’ve noticed that ζ is a
third root of unity, you can see that the elements of R× are exactly the sixth roots of unity,
±1, ±ζ and ±ζ2.

Alternatively, you could try to find the integer solutions to the equation

φ(a+ bζ) = a2 − ab+ b2 = 1.

Considering this as a quadratic equation for a in terms of b, it is easy to see from the
discriminant b2 − 4(b2 − 1) that there is a real solution a if and only if b2 ≤ 4

3 . But if b can
only take values in Z, then b must be 0, 1 or -1. Thus it is easy to check that the solutions
(a, b) are

(±1, 0), (0,±1), (1,−1) and (−1, 1).
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(c) We use the same method as for Question 2(c), and approximate x
y = u+ vζ, where

u, v ∈ Q by some q = m + nζ ∈ R. This time the factor we need to bound, φ(xy − q), has
the expression

(u−m)2 − (u−m)(v − n) + (v − n)2.

But as before, by picking m ∈ (u− 1
2 , u+ 1

2 ) ∩ Z and n ∈ (v − 1
2 , v +

1
2 ) ∩ Z, we get

φ

(
x

y
− q

)
= (u−m)2 − (u−m)(v − n) + (v − n)2 <

1

4
+

1

4
+

1

4
< 1.

(d) The exact same reasoning as for Question 2(d) holds.
(e) By the same reasoning as for Question 2, if ∃x, y ∈ R such that xy = p, then

φ(x) = φ(y) = p. But p ≡ 2 mod3 and you can show that a2 − ab + b2 is never congruent
to 2 mod3. (There are a finite number of cases to check.)

Question 4

From Problem Sheet 4 we know all elements of H have the form

(
z w

−w z

)
, where z, w ∈ C.

(
z w

−w z

)2

=

(
z2 − ww zw + zw
−zw − zw −ww + z2

)
If z is purely imaginary, then z + z = 0 and the two non-diagonal entries will be zero. We
would also have z2 = z2 and so to make the diagonal entries equal to -1, we can take any
w ∈ C such that |w|2 = ww = z2 + 1.

The fact that we’ve just found infinitely many elements of H which are roots of the
polynomial x2 + 1 does not contradict any theorem we know, since H is not a field.

Question 5

(a) To prove R is a ring you need to check the ring axioms. R is never an integral domain
as long as neither R1 nor R2 are trivial: (r1, 0) · (0.r2) = (0, 0) for all r1 ∈ R1, r2 ∈ R2.

(b) Both projections are clearly surjective. To check each projection πi : R −→ Ri is a
ring homomorphism, you need to check:

1. πi is a homomorphism of additive groups.

2. π1((a, b) · (c, d)) = π1(a · c, b · d) = a · c = π1((a, b)) · π1((c, d)), and similarly for pi2.

3. πi(1R) = πi((1R1
, 1R2

)) = 1Ri
.

Question 6

(a) You need to check that

1. I∩J is an additive subgroup of R. This follows from the fact I and J are both additive
subgroups of R.

2. If x ∈ I ∩ J and r ∈ R, then rx ∈ I ∩ J . This is true because both I and J are ideals,
so if x ∈ I and x ∈ J , then rx ∈ I and rx ∈ J for any r ∈ R, and so rx ∈ I ∩ J .
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(b) Check that

1. IJ is an additive subgroup of R. 0R is an element of both I and J so 0R · 0R = 0R ∈
IJ . IJ is closed under addition since the sum of two finite sums x1y1 + ... + xnyn,
x′
1y

′
1 + ...+ x′

my′m is another finite sum x1y1 + ...+ xnyn + x′
1y

′
1 + ...+ x′

my′m. Since I
is closed under additive inverses (−x)y = −xy ∈ IJ for any xy ∈ IJ .

2. For any r ∈ R and x1y1 + ...+ xnyn ∈ IJ , we have

r(x1y1 + ...+ xnyn) = r(x1y1) + ...+ r(xnyn) = (rx1)y1 + ...+ (rxn)yn ∈ IJ.

(c) For any x ∈ I, y ∈ J , xr ∈ I and ry ∈ J for all r ∈ R. In particular xy ∈ I and
xy ∈ J , so xy ∈ I ∩ J . We proved I ∩ J is an ideal, so we know it’s closed under addition,
and so any finite sum x1y − 1 + ...xnyn ∈ I ∩ J .

Let R = Z and I = J = 2Z. Then IJ = 4Z, which is a strict subset of I ∩ J = 2Z.
(d) You’ve seen in lectures that the maps R −→ R/I and R −→ R/J are homomor-

phisms of rings, with kernels I and J respectively. That R/I × R/J is a ring follows from
Question 5 and the fact that f is a homomorphism follows by the definition of multiplcation
and addition on the product ring. f(a) = 0(R/I)×(R/J) if and only if a+ I = 0R/I = I and
a+ J = 0R/J = J , which is true if and only if a ∈ I and a ∈ J , i.e. a ∈ I ∩ J .

Question 7

(a) Suppose I and J are coprime, i.e. I + J = R. We already know from Question 6(c)
that IJ ⊂ I ∩ J , so it remains to show the other inclusion I ∩ J ∈ IJ . Suppose x ∈ I ∩ J .
Since any r ∈ R can be written as r = a + b with a ∈ I and b ∈ J , we have 1 = a + b in
particular. So x = x(a + b) = xa + xb. Since R is commutative, xa ∈ IJ and xb ∈ IJ , so
x = xa+ xb ∈ IJ .

(b) From Question 6(d) we know that IJ = I∩J is the kernel of f : R −→ (R/I)×(R/J),
so f descends to an injective homomorphism g : R/IJ −→ (R/I) × (R/J). To show g is
also surjective, it’s enough to show f is surjective. Suppose (x+ I, y+ J) ∈ (R/I)× (R/J).
We need to find some r ∈ R such that r + I = x+ I and r + J = y + J . Again we use the
fact that 1 = a + b for some a ∈ I, b ∈ J . Then b = 1 − a and so b + I = 1 + I. Thus
bx + I = x + I, and by the same reasoning ay + J = y + J . But bx ∈ J and ay ∈ I so
bx+ ay + I = bx+ I = x+ I and bx+ ay + J = ay + J = y + J .

(c) If a ∈ Z and b ∈ Z are coprime in the usual integer sense of (a, b) = 1, then there
exist x, y ∈ Z such that 1 = ax+by. Thus 1 is an element of the ideal aZ+bZ, and therefore
R = aZ + bZ. So the aZ and bZ are coprime in the sense of ideals, and the result follows
from the previous part of the question.
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