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Question 1

Let d < —1 be an odd negative integer.

(a) Clearly 2 is not an invertible element of the ring R := Z[V/d] since its inverse 1 is
not in R. We have to show that if ab = 2 for a,b € R then a or b is invertible in R.

Using the hint given in the question, consider the map ¢ : R — Zx>o given by ¢(m +
nvd) = m? — n?d. Tt’s multiplicative - you can check that o((m + nvd)(k + IVd)) =
o(m + nvVd)p(k + 1v/d). Suppose for a contradiction that 2 = (m + nvd)(k + 1\/d) for
some n,m, k,l € Z, where neither m + nv/d nor k + [/d are invertible in R. Then, by the
multiplicative property of ¢, we have ¢(2) = 4 = (m? — n%d)(k? — ?d). Since both factors
are positive integers, they are either equal to 1 and 4 or both equal to 2. If m™n2d = 1,
then m + nv/d is invertible in R as (m + nvd)(m —nv/d) = 1. So m? — nd must equal 2.
m? and —n?d are both positive integers, so either

1. m? = 2 and —n?d = 0. Clearly this can’t be true since there’s no integer m that
squares to 2.

2. m? =0 and —n2d = 2. Since n? is positive and can’t equal 2, we must have —d = 2.
This is a contradiction since d is odd.

3. m? =1 and —n?d = 1. Since n? and —d are both positive integers, they must both
be 1. This is a contradiction since d < —1.

(b) Note a = %d is an integer since d is odd. If R were a unique factorisation domain,
then since 2 - a is a factorisation of 1 — d in R, with 2 irreducible, any other factorisation
- B of 1 — d must have either 2|a or 2|3. But clearly 2 does not divide either 1 — v/d or

1++d.

Question 2

(a) R is clearly a subring of the field of complex numbers C, and there are no zero divisors
in C. Alternatively, we could use the multiplicative property of ¢ again. Suppose Jx,y € R
such that zy = 0. Then ¢(zy) = p(x)p(y) = 0. But ¢(z) and ¢(y) are integers, so one of
them must be zero. p(z) =a® + b2 =0 if and only if a = b =0, i.e. z =0.

(b) Suppose r € R*. Then 3s € R such that rs = 1. Then 1 = ¢(rs) = o(r)e(s), so
o(r) = p(s) = 1 since they are both nonnegative integers whose product is 1.

(c) Clearly p(x) =0 iff z =0 so ¢ is a function R — Zx>( such that



1. o(zy) > ¢(z) for all z,y € R.
Indeed, p(zy) = ¢()p(y), and ¢(y) = 1.
2. Vz,y € R 3q,r € R such that z = qy + r and either r = 0 or ¢(r) < v(y).

To prove this, we’ll use the hint given in the question to approximate elements of Q(z)
by elements of R. The point is, to get the remainder r as ’small’ as possible (with
respect to ), we need to get the quotient ¢ a close enough approximation to %

% is in Q() so can be written as u + vi, where u,v € Q. So we need to pick ¢ = m+ni
close enough to u + vi such that

o(r) = oz — ay) = o(y)p (;” _ q) = () ((u—m)® + (v — m)?)

is smaller than ¢(y). This can be achieved if (u —m)? + (v —m)? < 1. But we can
pick m € (u— 3, u+31)NZand n € (v—3,v+ 1) NZ, and then

(u—m)*+ (v —m)? <1—|-1 <1
4 4

(d) Suppose that ¢(r) = p some prime number and r = ab for some a,b € R. Then
o(r) = p(a)e(b) = p, and since p is prime one of p(a) and ¢(b) is p and the other is 1. but
in part (b) we showed that ¢(a) =1 if and only if @ is a unit.

(e) Suppose for a contradiction that there are a,b € R\ R* such that ab = p. Then
©o(a)p(b) = o(p) = p?. But since neither a nor b is a unit, neither p(a) nor ¢(b) can equal
1, so p(a) = p(b) = p since p is prime. But p = 3 mod4 and you can show that the sum of
two squares is never congruent to 3 mod4. (Hint: show any square is congruent to either 0
or 1 mod4.)

Question 3

Question 3 is very similar to Question 2. Notice that ¢ is still the function that sends a
complex number z to the square of its modulus |z|? = 2Z.

(a) R is a subring of the field C.

(b) ¢ is multiplicative and

reR* << opr)=1

still holds by the same argument as in Question 2(b). So the invertible elements of R are
those with modulus 1 when considered as complex numbers. If you’ve noticed that ( is a
third root of unity, you can see that the elements of R* are exactly the sixth roots of unity,
+1, +¢ and +¢2.

Alternatively, you could try to find the integer solutions to the equation

ola+b) =a*—ab+1v* = 1.

Considering this as a quadratic equation for a in terms of b, it is easy to see from the
discriminant b2 — 4(b? — 1) that there is a real solution a if and only if b* < %. But if b can
only take values in Z, then b must be 0, 1 or -1. Thus it is easy to check that the solutions
(a,b) are

(£1,0), (0,£1), (1,-1) and (—1,1).



(c) We use the same method as for Question 2(c), and approximate % = u + v(, where

u,v € Q by some ¢ = m + n¢ € R. This time the factor we need to bound, go(% —q), has
the expression
(u—m)* — (u—m)(v—n)+ (v—n)

But as before, by picking m € (u— 3, u+3)NZ andn € (v— 1,0+ 1)NZ, we get

x 2 , 1 1 1
@(y—q)z(u—m) —(u—m)(v—n)+ (v—n) <1+1+1<1.

(d) The exact same reasoning as for Question 2(d) holds.

(e) By the same reasoning as for Question 2, if 3x,y € R such that zy = p, then
o(x) = ¢(y) = p. But p =2 mod3 and you can show that a? — ab + b? is never congruent
to 2 mod3. (There are a finite number of cases to check.)

Question 4

From Problem Sheet 4 we know all elements of H have the form <_Zw 15) , where z,w € C.

2 _ -
z  w) 2? — ww 2w+ zZw
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If z is purely imaginary, then z + Z = 0 and the two non-diagonal entries will be zero. We
would also have 22 = Z2 and so to make the diagonal entries equal to -1, we can take any
w € C such that |w|? = ww = 22 + 1.

The fact that we’ve just found infinitely many elements of H which are roots of the
polynomial 22 + 1 does not contradict any theorem we know, since H is not a field.

Question 5

(a) To prove R is a ring you need to check the ring axioms. R is never an integral domain
as long as neither Ry nor Ry are trivial: (r1,0) - (0.r2) = (0,0) for all r; € Ry, ro € Ra.

(b) Both projections are clearly surjective. To check each projection 7; : R — R; is a
ring homomorphism, you need to check:

1. m; is a homomorphism of additive groups.
2. m((a,b) - (¢,d)) =m(a-¢c,b-d) =a-c=m((a,b))- m((c,d)), and similarly for pis.

3. Wi(lR) = 7Ti((1R1a 1R2)) = 1Ri'

Question 6
(a) You need to check that

1. INJ is an additive subgroup of R. This follows from the fact I and J are both additive
subgroups of R.

2. fzelINndJ and r € R, then rx € INJ. This is true because both I and J are ideals,
soifx € I and z € J, then rx € [ and rx € J for any r € R, and so rxz € I N J.



(b) Check that

1. IJ is an additive subgroup of R. Og is an element of both I and J so Og -0z = 0g €
IJ. IJ is closed under addition since the sum of two finite sums xz1y1 + ... + Tp¥Yn,
xhyi + ...+ ), Y., is another finite sum 141 + ... + Tpyn + 24y] + ... + 20y, Since T
is closed under additive inverses (—xz)y = —xy € IJ for any xy € IJ.

2. For any r € R and z1y1 + ... + Tpyn € I.J, we have
r(ziyr + oo + Toyn) = r(@191) + oo F r(@nyn) = (re)yr + .o + (ren)yn € 1J.

(c) Forany z € I,y € J, zr € I and ry € J for all »r € R. In particular zy € I and
zy € J,soxy e INJ. We proved I NJ is an ideal, so we know it’s closed under addition,
and so any finite sum z1y — 1+ ..xpy, € INJ.

Let R=7Z and I = J = 27Z. Then IJ = 47, which is a strict subset of I N J = 2Z.

(d) You've seen in lectures that the maps R — R/I and R — R/J are homomor-
phisms of rings, with kernels I and J respectively. That R/I x R/J is a ring follows from
Question 5 and the fact that f is a homomorphism follows by the definition of multiplcation
and addition on the product ring. f(a) = Or/r)x (g if and only if a + 1 = 0r/; = I and
a+J=0g,; =J, which is true if and only ifa €  and a € J, i.e. a€ I N J.

Question 7

(a) Suppose I and J are coprime, i.e. I +J = R. We already know from Question 6(c)
that I.J € I NJ, so it remains to show the other inclusion I NJ € I.J. Suppose z € I N J.
Since any r € R can be written as r = a+ b with a € I and b € J, we have 1 = a + b in
particular. So x = x(a 4+ b) = xza + xb. Since R is commutative, za € I.J and zb € 1.J, so
z=zxa+abelJ.

(b) From Question 6(d) we know that IJ = IN.J is the kernel of f : R — (R/I)x(R/J),
so f descends to an injective homomorphism ¢ : R/IJ — (R/I) x (R/J). To show g is
also surjective, it’s enough to show f is surjective. Suppose (z+ I,y+J) € (R/I) x (R/J).
We need to find some r € R such that r+ I =x+ 1 and r+ J =y + J. Again we use the
fact that 1 = a+ b forsomea € I, b€ J. Thenb=1—-aandsob+ 1 =1+ I. Thus
bx +1 = x + I, and by the same reasoning ay + J = y+ J. But bz € J and ay € I so
bx +ay+I=brx+I=c+Tandbx+ay+J=ay+J=y+J.

(c) If a € Z and b € Z are coprime in the usual integer sense of (a,b) = 1, then there
exist x,y € Z such that 1 = ax+by. Thus 1 is an element of the ideal aZ + bZ, and therefore
R = aZ + bZ. So the aZ and bZ are coprime in the sense of ideals, and the result follows
from the previous part of the question.



