
UNSEEN PROBLEM SHEET 2

Note: The definitions introduced in Question 3 below are not examinable, unless they also
appear in the lecture notes. Comments or corrections to wl4714@ic.ac.uk

1) Let G be a group such that every element g ∈ G, g 6= e has order 2. Prove that G must be
abelian.

Solution: Let x, y ∈ G be arbitrary. We need to show that xy = yx. Since xy has order
dividing 2 we have

(xy)2 = e =⇒ xy = y−1x−1

Since x and y have order dividing 2 we have x = x−1, y = y−1 giving xy = yx as required.

2) Let GL2(R) be the group of invertible 2× 2 matrices with coefficients in R. Show that

GL2(R)× R2 → R2, (A, v) 7→ Av

defines an action of GL2(R) on R2.

• What are the orbits of that action?
• What are the fixed points of that action?
• What is the stabilizer of (1, 0) ∈ R2?

Consider now the subgroup

SO2(R) =

{(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
| 0 ≤ φ < 2π

}
Equivalently, SO2(R) is the group {A ∈ GL2(R) : AAT = I, det(A) = 1}. SO(2) also acts on R2

via the same operation.

• What are the orbits of that action?
• What are the fixed points of that action?
• What is the stabilizer of (1, 0) ∈ R2?

Solution: There are two orbits of the action of GL2(R): {(0, 0)} and R2 \ (0, 0). To see the
latter, note that for v ∈ R2, v 6= 0 by linear algebra we can find a matrix A mapping v to, say,
(1, 0) so that any nonzero vector is in the orbit of (1, 0).
A fixed point v of the action must satisfy Av = v for all A ∈ GL2(R). Taking A = −I, this gives
v = −v, which means that v = (0, 0) is the only fixed point of the action.
The stabilizer of (1, 0) consists of all matrices of the form(

1 a
0 b

)
where a, b ∈ R and b 6= 0.
The orbits of the action of SO2(R) are circles ∂Br of fixed radius r around the origin. To see
this, recall from linear algebra that we have ‖Av‖ = ‖v‖ for all A ∈ SO2(R) which implies that
Av lies on the same circle as v. Moreover, given a point v ∈ ∂Br, write v in polar coordinates
as (r, θ). Then the matrix (

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
maps (0, r) to v, so that every point v ∈ ∂Br lies in the orbit of (0, r).
The fixed points of the action are the same as above.
The stabilizer of (1, 0) consists of all matrices of the form(

1 a
0 b

)
1

mailto:wl4714@ic.ac.uk


2 UNSEEN PROBLEM SHEET 2

which are also in SO2(R), so applying the conditions AAT = I and detA = 1 shows that the
stabilizer consists just of the identity I (geometrically, no nontrivial rotation can fix a nonzero
real vector).

3) Let G be a group acting on a set X. For g ∈ GL2(C), define Fix(g) = {x ∈ X : g · x = x}.
• Show that the set H = {g ∈ G : Fix(g) = X} is a subgroup of G.
• If H is normal, show that there is an induced well-defined action of G/H on X.

Let GL2(C) be the group of of invertible 2 × 2 matrices with coefficients in C, and define the
Riemann sphere CP1 as the set-theoretic union of C and the singleton set {∞}. Define an action
of GL2(C) on CP1 by (

a b
c d

)
· z =

az + b

cz + d

with the understanding that −dc maps to ∞, and ∞ maps to a
c (If c = 0, then ∞ maps to ∞).

• Verify that this is indeed a group action.

• Determine the subgroup H =
{
A ∈ GL2(C) : Fix(A) = CP1

}
, and check that H is a

normal subgroup of GL2(C). Deduce that GL2(C)/H acts on CP1 as well. (The quotient
GL2(C)/H is called the projective general linear group PGL2(C), and is important in
geometry and algebra.)
• For A /∈ H, show that Fix(A) consists of two elements unless (a−d)2 +4bc = 0, in which

case Fix(A) consists of one element.
• Show that the action of PGL2(C) on CP1 is sharply 3-transitive: This means that for

every two pairwise distinct triples (z1, z2, z3), (w1, w2, w3) where zi, wi ∈ CP1, there exist
a unique A ∈ PGL2(C) such that A · zi = wi for all 1 ≤ i ≤ 3. (Hint: Show first that
given such a triple (z1, z2, z3), we can find a unique A ∈ PGL2(C) mapping z1 to 0, z2
to 1, and z3 to ∞)

Solution: I am assuming that G acts on the left, the argument for a right action is the same.
The verification that H is a subgroup is standard. The induced action of G/H is given by
[g] · z = gz. This is well-defined since any other representative of [g] is given by gh for some
h ∈ H, and (gh)z = g(hz) = gz.

It is clear that I · z = z. To verify associativity, let A =

(
a b
c d

)
, B =

(
a′ b′

c′ d′

)
. Suppose first

that z 6=∞, z 6= −d′

c′ , Bz 6= −
d
c . We compute

A · (B · z) =
aa′z+b′

c′z+d′ + b

ca
′z+b′

c′z+d′ + d

and

(AB) · z =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
· z =

(aa′ + bc′)z + ab′ + bd′

(ca′ + dc′)z + cb′ + dd′

These two expressions are the same (unless there is a typo). We still need to check some special
values of z:

• If z = −d′

c′ then A · (B · z) = a
c and (AB) · z = −(detB)a

−(detB)c = a
c

• If z =∞, then A · (B · z) = aa′+bc′

ca′+dc′ = (AB) · z

• If Bz = −d
c , then z = − cb′+dd′

ca′+dc′ . We compute A · (B · z) =∞ and (AB) · z =∞ as well.

One computes that H consists of matrices of the form aI for a 6= 0. Since H is contained in the
centre of GL2(C), it follows that H is normal. By the first part of the question PGL2(C) acts
on CP1 as well.
To compute Fix(A), we need to solve the equation

az + b

cz + d
= z
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If c 6= 0 this gives a quadratic equation in z which has two distinct roots iff (a−d)2 +4bc = 0. If
c = 0, we get the equation a

dz+ b
d = z. If a 6= d this equation has one complex solution z = b

d−a ,

and the other fixed point is ∞ (Recall that A · ∞ =∞ iff c = 0). Note that (a− d)2 + 4bc 6= 0
in this case. If a = d, the equation has no complex solution, and∞ is the unique solution. Note
that (a− d)2 + 4bc = 0 in this case.
For the last part, suppose first that z1, z2, z3 are all not equal to ∞. We follow the hint and
want to first find A ∈ GL2(C) such that A · z1 = 0, A · z2 = 1, A · z3 = ∞. This gives us the
equations

az1 + b = 0, az2 + b = cz2 + d, cz3 + d = 0

This expresses d, b in terms of a, c, and gives a(z2−z1) = c(z2−z3). Since the zi are distinct, we

can solve this to get c = a(z2−z1)
z2−z3 . Hence there is a one-parameter family of matrices satisfying

the three equations, given by

Aa =

(
a −az1

a(z2−z1)
z2−z3 −a(z2−z1)z3

z2−z3

)
It follows that there is a unique class in PGL2(C) satisfying the three equations above, a repre-
sentative is given for example by the matrix A1.
If one of the zi is ∞, we argue similarly. I will only do the case where z1 = ∞. This gives the
equations

a = 0, b = cz2 + d, cz3 + d = 0

(Remember that we defined A · ∞ = a
c ) so we get a 1-parameter family of matrices

Ac =

(
0 c(z2 − z3)
c −cz3

)
in GL2(C), and we again get a unique class in PGL2(C).

Note: You may have noticed that this solution is quite awkward and requires to split into
many different cases. The question can be solved in a much nicer and uniform way by intro-
ducing homogeneous coordinates on CP1. The process of adding ∞ to C to obtain CP1 is called
compactification, and the reason for doing so is that compact spaces have much nicer properties,
they are in a certain way similar to finite sets (this is intentionally vague). If you want to learn
more about this, the third year course Algebraic Curves covers this and much more beautiful
mathematics!


