UNSEEN PROBLEM SHEET 2

1) Let G be a group such that every element $g \in G, g \neq e$ has order 2. Prove that G must be abelian.

2) Let $\operatorname{GL}_2(\mathbb{R})$ be the group of invertible 2×2 matrices with coefficients in \mathbb{R} . Show that

$$\operatorname{GL}_2(\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2, \quad (A, v) \mapsto Av$$

defines an action of $GL_2(\mathbb{R})$ on \mathbb{R}^2 .

- What are the orbits of that action?
- What are the fixed points of that action?
- What is the stabilizer of $(1,0) \in \mathbb{R}^2$?

Consider now the subgroup

$$\operatorname{SO}_2(\mathbb{R}) = \left\{ \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \mid 0 \le \phi < 2\pi \right\}$$

Equivalently, $SO_2(\mathbb{R})$ is the group $\{A \in GL_2(\mathbb{R}) : AA^T = I, \det(A) = 1\}$. SO(2) also acts on \mathbb{R}^2 via the same operation.

- What are the orbits of that action?
- What are the fixed points of that action?
- What is the stabilizer of $(1,0) \in \mathbb{R}^2$?

3) Let G be a group acting on a set X. For $g \in GL_2(\mathbb{C})$, define $Fix(g) = \{x \in X : g \cdot x = x\}$.

- Show that the set $H = \{g \in G : Fix(g) = X\}$ is a subgroup of G.
- If H is normal, show that there is an induced well-defined action of G/H on X.

Let $\operatorname{GL}_2(\mathbb{C})$ be the group of of invertible 2×2 matrices with coefficients in \mathbb{C} , and define the *Riemann sphere* \mathbb{CP}^1 as the set-theoretic union of \mathbb{C} and the singleton set $\{\infty\}$. Define an action of $\operatorname{GL}_2(\mathbb{C})$ on \mathbb{CP}^1 by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

with the understanding that $\frac{-d}{c}$ maps to ∞ , and ∞ maps to $\frac{a}{c}$ (If c = 0, then ∞ maps to ∞).

- Verify that this is indeed a group action.
- Determine the subgroup $H = \{A \in \operatorname{GL}_2(\mathbb{C}) : \operatorname{Fix}(A) = \mathbb{CP}^1\}$, and check that H is a normal subgroup of $\operatorname{GL}_2(\mathbb{C})$. Deduce that $\operatorname{GL}_2(\mathbb{C})/H$ acts on \mathbb{CP}^1 as well. (The quotient $\operatorname{GL}_2(\mathbb{C})/H$ is called the *projective general linear group* $\operatorname{PGL}_2(\mathbb{C})$, and is important in geometry and algebra.)
- For $A \notin H$, show that Fix(A) consists of two elements unless $(a-d)^2 + 4bc = 0$, in which case Fix(A) consists of one element.
- Show that the action of $\mathrm{PGL}_2(\mathbb{C})$ on \mathbb{CP}^1 is sharply 3-transitive: This means that for every two pairwise distinct triples $(z_1, z_2, z_3), (w_1, w_2, w_3)$ where $z_i, w_i \in \mathbb{CP}^1$, there exist a unique $A \in \mathrm{PGL}_2(\mathbb{C})$ such that $A \cdot z_i = w_i$ for all $1 \leq i \leq 3$. (Hint: Show first that given such a triple (z_1, z_2, z_3) , we can find a unique $A \in \mathrm{PGL}_2(\mathbb{C})$ mapping z_1 to $0, z_2$ to 1, and z_3 to ∞)