Groups and Rings

Unseen Problem Sheet 3

October 28, 2021

Q1. Prove that, for every prime p, there are, up to isomorphism, precisely two nonisomorphic groups of order p^2 ; these are C_{p^2} and $C_p \times C_p$.

Q2. Let G be a finite abelian group and let p be a prime number. If p divides |G|, and N_p denotes the number of elements of G of order p, then

$$N_p \equiv -1 \pmod{p}$$

(Hint : Use Cauchy's theorem.)

Q3. Let H be a subgroup of index p in the finite group G, where p is the smallest prime divisor of |G|. Prove that H is a normal subgroup of G.

Q4. Let G be a group of order n. Prove that : (1) Let $g_1, g_2, \dots \in G$ be such that $g_1 \neq e$ and $H_i \subsetneq H_{i+1}$, where H_i is the subgroup generated by g_1, \dots, g_i . Then $|H_i| \ge 2^i$ for each i.

(2) G can be generated by at most log_2n elements.

Use Cayley's Theorem to conclude that the number of non-isomorphic groups of order n does not exceed $(n!)^{\log_2 n}$.