
GROUPS AND RINGS

RINGS UNSEEN PROBLEMS SHEET 1

SOLUTIONS

1) Consider the set C0(R) of continuous functions f : R → R such that f vanishes
at ±infinity, that is,

lim
t→±∞

f(t) = 0.

a) Prove that C0(R) is an Abelian group with respect to the ordinary sum
of functions.
Answer: The addition of two continuous functions is continuous. By
properties of limits, if f, g ∈ C0(R) then

lim
t→±∞

(f + g) = 0

also so C0(R) is closed under addition. The zero function f ≡ 0 is
the additive identity, and −f is the additive inverse of f (note −f is
continuous and converges to zero at ±∞ if f does). Associativity and
commutativity follow from the same properties for the group R itself.

b) Prove that the multiplication of two functions in C0(R) is in C0(R). Does
multiplication of functions distribute over addition of functions in C0(R)?
Answer: By properties of limits, if f, g ∈ C0(R) then

lim
t→±∞

(fg) = 0

and certainly fg is continuous. Since multiplication distributes over ad-
dition in R for every x we have f(x)(g(x)+h(x)) = f(x)g(x)+ f(x)h(x)
and so f(g + h) = fg + fh in C0(R).

c) Does C0(R) have a multiplicative identity element?
Answer: No. The multiplicative identity in R is 1, but the continuous
function f ≡ 1 is not contained in C0(R) because the limit as t → ±∞
is 1, not 0. Thus C0(R) satisfies all the axioms of a ring except having a
multiplicative identity.

2) A ring does not necessarily need to have a multiplicative identity element.
Let us call a ring without identity a rng (since we have “removed the i”).
Alternatively one may refer to a ring with identity as a unital ring.
a) If R is a rng, prove that the Abelian group R̂ := R ⊕ Z with the multi-

plication

(r, n) · (s,m) = (rs+mr + ns, nm)

is a ring with identity element. What is the multiplicative identity of R̂?
Answer: It is immediate that R̂ satisfies the axioms of an Abelian group
with respect to addition. We need to check that R̂ satisfies associativity
and distributivity of multiplication, and that it has an identity element.
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If (r1, n1), (r2, n2), (r3, n3) are elements of R̂, then

((r1, n1) · (r2, n2)) · (r3, n3)

= (r1r2 + n2r1 + n1r2, n1n2) · (r3, n3)

= ((r1r2 + n2r1 + n1r2)r3 + n3(r1r2 + n2r1 + n1r2) + n1n2r3, n1n2n3)

= (r1(r2r3 + n2r3 + n3r2) + n2n3r1 + n1(r2r3 + n2r3 + n3r2), n1n2n3)

= (r1, n1) · ((r2, n2) · (r3, n3)).

Thus multiplication in R̂ is associative. We also have

(r1, n1) · ((r2, n2) + (r3, n3))

= (r1, n1) · (r2 + r3, n2 + n3)

= (r1(r2 + r3) + (n2 + n3)r1 + n1(r2 + r3), n1(n2 + n3))

= ((r1r2 + n2r1 + n1r2) + (r1r3 + n3r1 + n1r3), (n1n2) + (n1n3))

= (r1, n1) · (r2, n2) + (r1, n1) · (r3, n3).

Thus multiplication is distributive over addition. Finally note that for
any (r, n) ∈ R̂, we have

(0, 1) · (r, n) = (1r, 1n) = (r, n) = (r, n) · (0, 1)

so (0, 1) ∈ R̂ is the multiplicative identity 1R̂.
b) Define a rng homomorphism f : R → S by removing the axiom that

f(1R) = 1S from the definition of a ring homomorphism. Prove that the

map f : R → R̂ defined by

f(r) = (r, 0)

is an injective rng homomorphism from R to R̂.
Answer: The map is obviously a group homomorphism since it is just
the inclusion R ↪→ R⊕ Z. We need to check

f(r1r2) = (r1r2, 0) = (r1, 0) · (r2, 0) = f(r1)f(r2)

so f is a rng homomorphism. We recall that the additive identity in R̂
is (0, 0), so if f(r) = (0, 0) we must have r = 0 so f is injective.

c) There is a map g : R̂ → Z defined by

g(r, n) = n.

What is the kernel of g? Conclude that every rng is an ideal in a ring.
Answer: Suppose g(r, n) = 0. Then n = 0 so ker g = im f is simply the

copy of R inside R ⊕ Z. Since g is a ring homomorphism from R̂ to Z,
its kernel is an ideal. Thus every rng can be realised as an ideal in its
unitalization.

d) (Harder) Consider the ring C0(R). We can consider the unitalization of

C0(R) as an algebra, which means we take Ĉ0(R) := C0(R)⊕ R instead

of ⊕Z. Let us write R̄ = R ∪ {x∞}. Define a map φ : Ĉ0(R) → C(R̄) by

(f, α) 7→

(
x 7→

{
f(x) + α x ∈ R
α x = x∞

)
for f ∈ C0(R) and α ∈ R. Let C(S1) denote the ring of continuous
functions h : [−π/2, π/2] → R such that h(−π/2) = h(π/2). Prove
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that C(R̄) is isomorphic to C(S1) and conclude that the unitalization of
the functions vanishing at infinity on R is equivalent to the continuous
functions on the circle, its one-point compactification. (Hint: construct
an isomorphism between functions on R̄ and functions on the interval
[−π/2, π/2] using tan : (−π/2, π/2) → R. Check that under the above
constructions, if f ∈ C0(R) then the induced function h ∈ C(S1) is
continuous on [−π/2, π/2]. Show that this map is injective and surjective,
and is a ring homomorphism.)

Answer: Define a map φ : Ĉ0(R) → C(S1) as follows. Given an element

(f, α) in Ĉ0(R), consider the function h : [−π/2, π/2] → R defined by

h(x) = φ(f)(x) :=

{
α x = −π/2, π/2

f(tan(x)) + α −π/2 < x < π/2
.

Since the composition of continuous functions is continuous, h is con-
tinuous on (−π/2, π/2). Let us verify continuity at one endpoint of the
interval (the other being similar). Here we use the property of limits that
if the limit of a composition of two functions exists then

lim
x→c

f(g(x)) = lim
u→b

f(u)

where limx→c g(x) = b.

lim
x→π/2

h(x) = lim
x→π/2

(f(tan(x)) + α)

= lim
x→π/2

(f(tan(x))) + α

= lim
t→∞

f(t) + α

= α

Thus h is continuous at the endpoints π/2 (and similarly for −π/2).
In particular h ∈ C(S1). One can verify by direct computation that
φ(f +g)(x) = φ(f)(x)+φ(g)(x) for every x ∈ [−π/2, π/2]. We also have

the zero element (0, 0) ∈ Ĉ0(R) maps to the function h ≡ 0 in C(S1), and

the multiplicative identity (0, 1) ∈ Ĉ0(R) maps to the constant function
h ≡ 1, which is the multiplicative identity in C(S1). Let us check that
φ preserves multiplication. We have

φ((f, α) · (g, β)) = φ(fg + αg + βf, αβ).

For x = π/2,−π/2 then

φ((f, α) · (g, β))(x) = αβ = φ(f, α)(x)φ(g, β)(x)

and for x ∈ (−π/2, π/2) we have

φ((f, α) · (g, β))(x)
= f(tan(x))g(tan(x)) + αg(tan(x)) + βf(tan(x)) + αβ

= (f(tan(x)) + α)(g(tan(x)) + β)

= φ(f, α)(x)φ(g, β)(x).

Thus φ is a ring homomorphism from Ĉ0(R) to C(S1). Clearly if φ(f, α)
is the zero function then α = 0 (since it is zero at the endpoints) and
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f(tan(x)) = 0 for every x ∈ (−π/2, π/2). Since arctan is a bijection from
(−π/2, π/2) → R, we have f(t) = 0 for all t ∈ R so φ is injective.
Finally to see φ is surjective, given some h ∈ C(S1) then the element

(f, α) ∈ Ĉ0(R) defined by α = h(π/2) and

f(t) = h(arctan(t))− α

where arctan : R → (−π/2, π/2). Since arctan−1 = tan, this is the

inverse construction to φ and hence φ is a ring isomorphism Ĉ0(R) →
C(S1).

The above is called the unitalization of a ring. The process in (d) above is
a method to construct the one-point compactification of a space using ring
theory.

3) Even if a ring R has a multiplicative identity 1R, not every element r of R
needs to have a multiplicative inverse r−1. A multiplicative set S ⊂ R is a
subset of R (not necessarily a subgroup or subring!) which is closed under
multiplication and contains 1R.
a) Define a set S−1R as pairs (s, r) ∈ S×R modulo the equivalence relation

(s, r) ∼ (s′, r′)

if and only if there exists a t ∈ S such that t(sr′ − s′r) = 0. Define
addition and multiplication in S−1R as

[s, r] + [s′, r′] := [ss′, rs′ + r′s]

[s, r] · [s′, r′] := [ss′, rr′].

Prove that these operations are well-defined and that S−1R forms a ring.
Answer: Let us write [s, r] = r/s for the rest of this question. Then
the equivalence relation states (tr)/(ts) = r/s for t ∈ S. It follows from
properties of fractions that addition and scalar multiplication are well-
defined, distributive, and associative. The additive identity is 0/1 and
the multiplicative identity is 1/1. The additive inverse of r/s is (−r)/s

b) Define a map f : R → S−1R by f(r) = (1, r). Prove that f is a ring
homomorphism. Prove that f is injective if and only if S does not contain
any zero divisors of R.
Answer: We have f(r1r2) = (r1r2)/1 = (r1/1)(r2/1) = f(r1)f(r2). The
other properties of a ring homomorphism are also easily satisfied. Finally
if f(r) = 0/1 then r/1 = 0/1. Recall that r/1 = 0/1 if and only if there
exists a t ∈ S such that t(1 · r − 0 · 1) = tr = 0.
If S has a zero-divisor t, then let r ̸= 0 be such that tr = 0. Then
f(r) = 0/1 so f is not injective. On the other hand suppose S has no
zero-divisors. Then for any r such that f(r) = 0/1, we have some t ∈ S
such that tr = 0. But since S has no zero-divisors, this implies r = 0.
Thus f is injective if and only if S has no zero-divisors.

c) Prove that if s ∈ S, then f(s) has a multiplicative inverse in S−1R.
Answer: The element 1/s is the multiplicative inverse to s/1 = f(s).

d) Suppose 0 ∈ S. What is S−1R?
Answer: Let (s, r), (s′, r′) ∈ S−1R. Then 0(sr′ − s′r) = 0 so (s, r) ∼
(s′, r′). Thus S−1R consists of a single equivalence class, which must
contain (1, 0) = 0/1. Thus S−1R = {0} is the zero ring.
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e) Suppose R is an integral domain and S = R\{0}. Prove that S−1R is a
field.
Answer: We need to verify that any element of S−1R that isn’t zero
has a multiplicative inverse. Let r/s ∈ S−1R be nonzero. Then r, s ̸= 0.
Then we see

(r/s)(s/r) = (rs)/(sr).

Since R is an integral domain, it is commutative, so

(r/s)(s/r) = (rs)/(rs).

Since R is an integral domain, rs ̸= 0 for r, s ̸= 0, and so rs ∈ S. But
then (rs)/(rs) = 1/1 in S−1R, and so r/s has a multiplicative inverse
s/r. Thus every non-zero element of S−1R has an inverse and S−1R is
a field.

The construction above is called the localization of R at S, and elements (s, r)
are written r

s . The localization S−1R adds in a multiplicative inverse for every

element of S. The localization (R\{0})−1R is called the field of fraction of R.


