GROUPS AND RINGS RINGS UNSEEN PROBLEMS SHEET 1

1) Consider the set $C_0(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f vanishes at \pm infinity, that is,

$$\lim_{t \to \pm \infty} f(t) = 0.$$

- a) Prove that $C_0(\mathbb{R})$ is an Abelian group with respect to the ordinary sum of functions.
- b) Prove that the multiplication of two functions in $C_0(\mathbb{R})$ is in $C_0(\mathbb{R})$. Does multiplication of functions distribute over addition of functions in $C_0(\mathbb{R})$?
- c) Does $C_0(\mathbb{R})$ have a multiplicative identity element?
- 2) A ring does not necessarily need to have a multiplicative identity element. Let us call a ring without identity a *rng* (since we have "removed the i"). Alternatively one may refer to a ring with identity as a *unital ring*.
 - a) If R is a rng, prove that the Abelian group $\hat{R}:=R\oplus\mathbb{Z}$ with the multiplication

$$(r,n) \cdot (s,m) = (rs + mr + ns, nm)$$

is a ring with identity element. What is the multiplicative identity of *R*?

b) Define a rng homomorphism $f : R \to S$ by removing the axiom that $f(1_R) = 1_S$ from the definition of a ring homomorphism. Prove that the map $f : R \to \hat{R}$ defined by

$$f(r) = (r, 0)$$

is an injective rng homomorphism from R to \hat{R} .

c) There is a map $g: \hat{R} \to \mathbb{Z}$ defined by

$$g(r,n) = n.$$

What is the kernel of g? Conclude that every rng is an ideal in a ring.

d) (Harder) Consider the ring $C_0(\mathbb{R})$. We can consider the unitalization of $C_0(\mathbb{R})$ as an algebra, which means we take $\hat{C}_0(\mathbb{R}) := C_0(\mathbb{R}) \oplus \mathbb{R}$ instead of $\oplus \mathbb{Z}$. Let us write $\mathbb{R} = \mathbb{R} \cup \{x_\infty\}$. Define a map $\varphi : \hat{C}_0(\mathbb{R}) \to C(\mathbb{R})$ by

$$(f,\alpha) \mapsto \left(x \mapsto \begin{cases} f(x) + \alpha & x \in \mathbb{R} \\ \alpha & x = x_{\infty} \end{cases} \right)$$

for $f \in C_0(\mathbb{R})$ and $\alpha \in \mathbb{R}$. Let $C(S^1)$ denote the ring of continuous functions $h : [-\pi/2, \pi/2] \to \mathbb{R}$ such that $h(-\pi/2) = h(\pi/2)$. Prove that $C(\overline{\mathbb{R}})$ is isomorphic to $C(S^1)$ and conclude that the unitalization of the functions vanishing at infinity on \mathbb{R} is equivalent to the continuous functions on the circle, its one-point compactification. (Hint: construct an isomorphism between functions on $\overline{\mathbb{R}}$ and functions on the interval $[-\pi/2, \pi/2]$ using tan : $(-\pi/2, \pi/2) \to \mathbb{R}$. Check that under the above constructions, if $f \in C_0(\mathbb{R})$ then the induced function $h \in C(S^1)$ is continuous on $[-\pi/2, \pi/2]$. Show that this map is injective and surjective, and is a ring homomorphism.)

The above is called the *unitalization of a ring*. The process in (d) above is a method to construct the one-point compactification of a space using ring theory.

- 3) Even if a ring R has a multiplicative identity 1_R , not every element r of R needs to have a multiplicative inverse r^{-1} . A multiplicative set $S \subset R$ is a subset of R (not necessarily a subgroup or subring!) which is closed under multiplication and contains 1_R .
 - a) Define a set $S^{-1}R$ as pairs $(s, r) \in S \times R$ modulo the equivalence relation

$$(s,r) \sim (s',r')$$

if and only if there exists a $t \in S$ such that t(sr' - s'r) = 0. Define addition and multiplication in $S^{-1}R$ as

$$[s,r] + [s',r'] := [ss',rs' + r's]$$

$$[s,r] \cdot [s',r'] := [ss',rr'].$$

Prove that these operations are well-defined and that $S^{-1}R$ forms a ring.

- b) Define a map $f : R \to S^{-1}R$ by f(r) = (1, r). Prove that f is a ring homomorphism. Prove that f is injective if and only if S does not contain any zero divisors of R.
- c) Prove that if $s \in S$, then f(s) has a multiplicative inverse in $S^{-1}R$.
- d) Suppose $0 \in S$. What is $S^{-1}R$?
- e) Suppose R is an integral domain and $S=R\backslash\{0\}.$ Prove that $S^{-1}R$ is a field.

The construction above is called the *localization of* R at S, and elements (s, r) are written $\frac{r}{s}$. The localization $S^{-1}R$ adds in a multiplicative inverse for every element of S. The localization $(R \setminus \{0\})^{-1}R$ is called the *field of fraction* of R.