GROUPS AND RINGS - Unseen Problem Sheet

December 2, 2021

Rings of fractions

Throughout this Problem Sheet R is a commutative ring. You know that if $a, b, c \in R$, a is not zero nor a zero divisor and $ab = ac$ in R, then $b = c$. Thus a non-zero element that is not a zero divisor enjoys some of the properties of a unit without necessarily possessing a multiplicative inverse in R. On the other hand, you know that a zero divisor a cannot be a unit in R , and if a is a zero divisor we cannot always cancel the a's in the equation $ab = ac$ to obtain $b = c$. The aim of this Problem Sheet is to prove that a commutative ring R is always a subring of a larger ring Q in which every non-zero element of R that is not a zero divisor is a unit in Q . The principal application of this will be to integral domains, in which case this ring Q will be a field, called its field of fractions or quotient field. Indeed, the paradigm for the construction of Q from R is the one offered by the construction of the field of rational numbers from the integral domain Z.

In order to see the essential features of the construction of the field Q from the integral domain Z, we review the basic properties of fractions. Each rational number may be represented in many different ways as the quotient of two integers (for example, $\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \cdots$, etc.). These representations are related by

$$
\frac{a}{b} = \frac{c}{d}
$$
 if and only if $ad = bc$.

In more precise terms, the fraction $\frac{a}{b}$ is the equivalence class of ordered pairs (a, b) of integers with $b \neq 0$ under the equivalence relation: $(a, b) \sim (c, d)$ if and only if $ad = bc$. The arithmetic operations on fractions are given by

$$
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \quad \text{and} \quad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}.
$$

These are well defined (independent of choice of representatives of the equivalence classes) and make the set of fractions into a commutative ring (in fact, a field), \mathbb{Q} . The integers \mathbb{Z} are identified with the subring $\{\frac{a}{1} \mid a \in \mathbb{Z}\}$ of \mathbb{Q} and every non-zero integer a has an inverse $\frac{1}{a}$ in \mathbb{Q} .

It seems reasonable to attempt to follow the same steps for any commutative ring R , allowing arbitrary denominators. If, however, b is zero or a zero divisor in R, say $bd = 0$, and if we allow b as a denominator, then we should expect to have

$$
d = \frac{d}{1} = \frac{bd}{b} = \frac{0}{b} = 0
$$

in the "ring of fractions". Thus if we allow zero or zero divisors as denominators, there must be some collapsing in the sense that we cannot expect R to appear naturally as a subring of this "ring of fractions". A second restriction is more obviously imposed by the laws of addition and multiplication: if ring elements b and d are allowed as denominators, then bd must also be a denominator, i.e. the set of denominators must be closed under multiplication in R . You will show that these two restrictions are sufficient to construct a ring of fractions for R. Note that the following theorem includes the construction of ${\mathbb Q}$ from ${\mathbb Z}$ as a special case.

Theorem 1. Let R be a commutative ring. Let D be any non-empty subset of R that does not contain 0, does not contain any zero divisors and is closed under multiplication (i.e., $ab \in D$ for all $a, b \in D$). Then there is a commutative ring Q such that Q contains R as a subring and every element of D is a unit in Q . The ring Q has the following additional properties:

- (1) every element of Q is of the form rd^{-1} for some $r \in R$ and $d \in D$. In particular, if $D = R \setminus \{0\}$, then Q is a field.
- (2) (uniqueness of Q) The ring Q is the "smallest" ring containing R in which all elements of D become units, in the following sense. Let S be any commutative ring and let $\varphi: R \longrightarrow S$ be any injective ring homomorphism such that $\varphi(d)$ is a unit in S for every $d \in D$. Then there is an injective homomorphism $\Phi: Q \longrightarrow S$ such that $\Phi|_R = \varphi$. In other words, any ring containing an isomorphic copy of R in which all the elements of D become units must also contain an isomorphic copy of Q.

Exercise 1. In order to prove Theorem 1, let

$$
\mathcal{F} = \{(r, d) \mid r \in R, d \in D\}
$$

and define the relation \sim on F by

 $(r, d) \sim (s, e)$ if and only if $re = sd$.

- (a) Check that \sim is an equivalence relation.
- (b) Denote the equivalence class of (r, d) by $\frac{r}{d}$:

$$
\frac{r}{d} = \{(a, b) \mid a \in R, b \in D \quad and \quad rb = ad\}.
$$

Let Q be the set of equivalence classes under \sim , and define an additive and multiplicative structure on Q:

$$
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad and \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}.
$$

Prove that Q is a commutative ring.

(c) Embed R into Q by defining an injective ring homomorphism

$$
\iota\colon R\longrightarrow Q.
$$

- (d) Check that each $d \in D$ has a multiplicative inverse in Q.
- (e) Establish the uniqueness property of Q.

Definition 1. Let R , D and Q be as in Theorem 1.

- (1) The ring Q is called the ring of fractions of R with respect to D and is denoted $D^{-1}R$.
- (2) If R is an integral domain and $D = R \setminus \{0\}$, then Q is called the field of fractions *or* quotient field *of R*.

We now generalise the construction of "ring of fractions" given above by allowing D to contain zero or zero divisors, and so in this case R need not embed as a subring of $D^{-1}R$.

Theorem 2. Let R be a commutative ring and let D be a multiplicatively closed subset of R containing 1. Then there is a commutative ring $D^{-1}R$ and a ring homomorphism $\pi: R \longrightarrow D^{-1}R$ satisfying the following universal property: for any homomorphism $\psi: R \longrightarrow S$ of commutative rings (that sends 1 to 1) such that $\psi(d)$ is a unit in S for every $d \in D$, there is a unique homomorphism $\Psi: D^{-1}R \longrightarrow S$ such that $\Psi \circ \pi = \psi$

Exercise 2. The proof of Theorem 2 is similar to the one of Theorem 1.

(i) How would you define the relation on $R \times D$ in this case? And how would you define π ?

- (ii) Find ker(π) and deduce that π is an injection if and only if D contains no zero divisors or zero of R.
- (iii) Prove that $D^{-1}R = 0$ if and only if $0 \in D$, hence if and only if D contains nilpotent elements.

Definition 2. The ring $D^{-1}R$ is called the ring of fractions of R with respect to D or the localisation of R at D.

Exercise 3. Check that the set D of invertible elements of a ring R satisfies the conditions of Theorem 2, and describe the ring $D^{-1}R$.

Exercise 4. Check that for every ideal I of R, the set $D = 1 + I$ satisfies the conditions of Theorem 2.

Exercise 5. Let $R = \mathbb{Z}_{12}$ be the ring of integers mod 12 and let $D =$ ${1, 4, 7, 10} \subseteq R$. Check that D satisfies the conditions of Theorem 2 and that the homomorphism $\pi: R \longrightarrow D^{-1}R$ is not injective.