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Rings of fractions

Throughout this Problem Sheet R is a commutative ring. You know that if
a, b, c ∈ R, a is not zero nor a zero divisor and ab = ac in R, then b = c. Thus
a non-zero element that is not a zero divisor enjoys some of the properties of
a unit without necessarily possessing a multiplicative inverse in R. On the
other hand, you know that a zero divisor a cannot be a unit in R, and if a
is a zero divisor we cannot always cancel the a’s in the equation ab = ac to
obtain b = c. The aim of this Problem Sheet is to prove that a commutative
ring R is always a subring of a larger ring Q in which every non-zero element
of R that is not a zero divisor is a unit in Q. The principal application of
this will be to integral domains, in which case this ring Q will be a field,
called its field of fractions or quotient field. Indeed, the paradigm for the
construction of Q from R is the one offered by the construction of the field
of rational numbers from the integral domain Z.

In order to see the essential features of the construction of the field Q
from the integral domain Z, we review the basic properties of fractions. Each
rational number may be represented in many different ways as the quotient
of two integers (for example, 1

2 = 2
4 = 3

6 = · · · , etc.). These representations
are related by

a

b
=
c

d
if and only if ad = bc.

In more precise terms, the fraction a
b is the equivalence class of ordered pairs

(a, b) of integers with b 6= 0 under the equivalence relation: (a, b) ∼ (c, d) if
and only if ad = bc. The arithmetic operations on fractions are given by

a

b
+
c

d
=
ad+ bc

bd
and

a

b
× c

d
=
ac

bd
.

These are well defined (independent of choice of representatives of the equiv-
alence classes) and make the set of fractions into a commutative ring (in fact,
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a field), Q. The integers Z are identified with the subring
{
a
1 | a ∈ Z

}
of Q

and every non-zero integer a has an inverse 1
a in Q.

It seems reasonable to attempt to follow the same steps for any commu-
tative ring R, allowing arbitrary denominators. If, however, b is zero or a
zero divisor in R, say bd = 0, and if we allow b as a denominator, then we
should expect to have

d =
d

1
=
bd

b
=

0

b
= 0

in the “ring of fractions”. Thus if we allow zero or zero divisors as denomi-
nators, there must be some collapsing in the sense that we cannot expect R
to appear naturally as a subring of this “ring of fractions”. A second restric-
tion is more obviously imposed by the laws of addition and multiplication:
if ring elements b and d are allowed as denominators, then bd must also be
a denominator, i.e. the set of denominators must be closed under multi-
plication in R. You will show that these two restrictions are sufficient to
construct a ring of fractions for R. Note that the following theorem includes
the construction of Q from Z as a special case.

Theorem 1. Let R be a commutative ring. Let D be any non-empty subset
of R that does not contain 0, does not contain any zero divisors and is
closed under multiplication (i.e., ab ∈ D for all a, b ∈ D). Then there is a
commutative ring Q such that Q contains R as a subring and every element
of D is a unit in Q. The ring Q has the following additional properties:

(1) every element of Q is of the form rd−1 for some r ∈ R and d ∈ D. In
particular, if D = R \ {0}, then Q is a field.

(2) (uniqueness of Q) The ring Q is the “smallest” ring containing R in
which all elements of D become units, in the following sense. Let S
be any commutative ring and let ϕ : R −→ S be any injective ring
homomorphism such that ϕ(d) is a unit in S for every d ∈ D. Then
there is an injective homomorphism Φ: Q −→ S such that Φ|R = ϕ.
In other words, any ring containing an isomorphic copy of R in which
all the elements of D become units must also contain an isomorphic
copy of Q.

Exercise 1. In order to prove Theorem 1, let

F = {(r, d) | r ∈ R, d ∈ D}

and define the relation ∼ on F by

(r, d) ∼ (s, e) if and only if re = sd.
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(a) Check that ∼ is an equivalence relation.

(b) Denote the equivalence class of (r, d) by r
d :

r

d
= {(a, b) | a ∈ R, b ∈ D and rb = ad} .

Let Q be the set of equivalence classes under ∼, and define an additive
and multiplicative structure on Q:

a

b
+
c

d
=
ad+ bc

bd
and

a

b
× c

d
=
ac

bd
.

Prove that Q is a commutative ring.

(c) Embed R into Q by defining an injective ring homomorphism

ι : R −→ Q.

(d) Check that each d ∈ D has a multiplicative inverse in Q.

(e) Establish the uniqueness property of Q.

Definition 1. Let R, D and Q be as in Theorem 1.

(1) The ring Q is called the ring of fractions of R with respect to D and
is denoted D−1R.

(2) If R is an integral domain and D = R \ {0}, then Q is called the field
of fractions or quotient field of R.

We now generalise the construction of “ring of fractions” given above by
allowing D to contain zero or zero divisors, and so in this case R need not
embed as a subring of D−1R.

Theorem 2. Let R be a commutative ring and let D be a multiplicatively
closed subset of R containing 1. Then there is a commutative ring D−1R
and a ring homomorphism π : R −→ D−1R satisfying the following universal
property: for any homomorphism ψ : R −→ S of commutative rings (that
sends 1 to 1) such that ψ(d) is a unit in S for every d ∈ D, there is a
unique homomorphism Ψ: D−1R −→ S such that Ψ ◦ π = ψ

Exercise 2. The proof of Theorem 2 is similar to the one of Theorem 1.

(i) How would you define the relation on R × D in this case? And how
would you define π?
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(ii) Find ker(π) and deduce that π is an injection if and only if D contains
no zero divisors or zero of R.

(iii) Prove that D−1R = 0 if and only if 0 ∈ D, hence if and only if D
contains nilpotent elements.

Definition 2. The ring D−1R is called the ring of fractions of R with respect
to D or the localisation of R at D.

Exercise 3. Check that the set D of invertible elements of a ring R satisfies
the conditions of Theorem 2, and describe the ring D−1R.

Exercise 4. Check that for every ideal I of R, the set D = 1 + I satisfies
the conditions of Theorem 2.

Exercise 5. Let R = Z12 be the ring of integers mod 12 and let D =
{1, 4, 7, 10} ⊆ R. Check that D satisfies the conditions of Theorem 2 and
that the homomorphism π : R −→ D−1R is not injective.
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