
LINEAR ALGEBRA MATH 50003 Solutions to Problem Sheet 1

1. (a) This map is T (v) = Av, where A =

−1 1 −1
0 −4 6
0 −3 5

.

Characteristic poly is (x + 1)2(x − 2), so eigenvalues are −1, 2 with alg multiplicities 2,1
respectively. Geometric multiplicity of the evalue -1 is dimension of the -1 eigenspace, which is
1; geometric mult of 2 is also 1. Since g(−1) < a(−1), there is no basis of evectors.

(b) Matrix of T with respect to the usual basis 1, x, x2, x3 is


1 0 −1 −2
0 1 4 9
0 0 1 0
0 0 0 1

. Character-

istic poly is (x− 1)4, evalue 1, a(1) = 4, g(1) = 2. Not diagonalisable.

(c) Matrix of T w.r.t. basis

(
1 0
0 0

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
isA =


1 −2 0 0
1 4 0 0
0 0 1 −2
0 0 1 4

,

which has char poly (x − 3)2(x − 2)2. Mults are a(3) = g(3) = 2, a(2) = g(2) = 2. It is diago-
nalisable.

(d) T sends 1→ 0, x→ 3x, x2 → x+ 6x2, so matrix of T wrt basis 1, x, x2 is

 0 0 0
0 3 1
0 0 6

.

This has distinct evalues 0,3,6, all with alg and geom mult 1, and there is a basis of evectors.

(e) The char poly is (x + 1)2(x − 1). The -1 eigenspace consists of solutions to the system 0 a b
0 2 c
0 0 0

x = 0, so it is 2-dimensional iff ac− 2b = 0.

2. (a) |A| = 7, so A is invertible iff p 6= 7. Char poly is x2 − 8x+ 7 = (x− 1)(x− 7), so evalues
are 1, 7. If p 6= 2, 3 these are distinct, so A is diagonalisable by 2.6 in lecture notes. If p = 2 or
3, the only evalue is 1, and find that eigenspace E1 is 1-dimensional, so A is not diagonalisable.

(b) Evalues of B are 1, 2, α. If α = 0 these are distinct, so B is diagonalisable. If α = 1,
the repeated evalue is 1, and we check that eigenspace E1 has dim 2, so B is diagble. If α = 2,
repeated evalue is 2, and find that eigenspace E2 has dim 1, so B is not diagble.

(c) Characteristic poly of this matrix is x2 + 1. Suppose p ≡ 3 mod 4. If α ∈ Fp is a root of
x2+1, then α2 = −1 and so α is an element of order 4 in the group F∗p. However |F∗p| = p−1 is not
divisible by 4, so this is a contradiction by Lagrange’s theorem. Hence C is not diagonalisable.

Other primes: if p = 2 the poly x2 + 1 = (x+ 1)2 only has the root 1, and the eigenspace E1

has dim 1, so C is not diagonalisable. Finally, consider p ≡ 1 mod 4. It is a famous fact (look it
up on the web or in a book!) that the poly x2 + 1 has two distinct roots ±λ ∈ Fp in this case,
so C is diagonalisable.

3. (a) (1) First, by 1st year linear algebra, A ∼1 B iff ∃ elementary matrices E1, . . . , Ek such
that B = E1 · · ·EkA. Obviously A ∼1 A.

So A ∼1 B ⇒ B = E1 · · ·EkA⇒ A = E−1k · · ·E
−1
1 B ⇒ B ∼1 A.

And A ∼1 B,B ∼1 C ⇒ B = E1 · · ·EkA,C = F1 · · ·FlA⇒ C = F1 · · ·FlE1 · · ·EkA⇒ A ∼1

C.

Hence ∼1 is an equivalence relation.

(2) Next, A ∼2 B if ∃P such that B = P−1AP .

Then A ∼2 A as A = I−1AI.

And A ∼2 B ⇒ B = P−1AP ⇒ A = PBP−1 ⇒ B ∼2 A.

FinallyA ∼2 B, B ∼2 C ⇒ B = P−1AP, C = Q−1BQ⇒ C = Q−1P−1APQ = (PQ)−1A(PQ)⇒
A ∼2 C.

Hence ∼2 is an equivalence relation.

(b) Neither is contained in the other. Eg. the matrices

(
0 1
0 0

)
,

(
0 0
1 0

)
are similar but



not row-equivalent; and

(
1 0
0 0

)
,

(
2 0
0 0

)
are row-equiv but not similar.

4. We’ll use the permutation-style definition of the determinant from the 1st year course: this is

det(A) =
∑
π∈Sn

sgn(π)a1,π(1) · · · an,π(n).

Now let A =

(
B C
0 D

)
as in the question.

Consider a term sgn(π)a1,π(1) · · · an,π(n) in det(A), where π ∈ Sn. Because of the t × s
zero matrix in the bottom left of A, for this term to be non-zero, it is necessary that π sends
{1, . . . s} → {1, . . . s} and {s+1, . . . s+ t} → {s+1, . . . s+ t}. We can write such a π as a product
π1π2, where π1 is a permutation of {1, . . . s} and π2 is a permutation of {s + 1, . . . s + t}. Also
sgn(π) = sgn(π1) sgn(π2). Hence

det(A) =
∑
π1,π2

sgn(π1)sgn(π2)b1,π1(1) · · · bs,π1(s) ds+1,π2(s+1) · · · ds+t,π2(s+t) =

∑
π1

sgn(π1)b1,π1(1) · · · bs,π1(s)

∑
π2

sgn(π2)ds+1,π2(s+1) · · · ds+t,π2(s+t) = det(B) det(D).

5. (a) We are given that A and B are similar, so ∃ P such that B = P−1AP .

1. Then detB = (detP )−1detA detP = detA.

2. The char poly cB(x) = det (xI −B) = detP−1(xI −A)P = det (xI −A) = cA(x).

3. As A,B have the same char poly, they have the same evalues.

4. We have AP = PB and P invertible. Hence

v ∈ ker(B)⇔ PBv = 0⇔ APv = 0⇔ Pv ∈ ker(A).

Hence P (ker(B)) = ker(A), and so ker(A) and ker(B) have the same dimension, ie. A and B
have the same nullity.

5. Let λ be an evalue of A (also of B). The geom mult gA(λ) = dim ker(A − λI). Since
A− λI is similar to B − λI, gB(λ) = dim ker(B − λI) = dim ker(A− λI) = gA(λ).

6. A and B have the same rank by the Rank-Nullity theorem and part 4.

7. In the characteristic poly cA(x), the coefficient of xn−1 is −tr(A) (use the defn of the
determinant in evaluating cA(x) = det(xI−A)). As cA(x) = cB(x), it follows that tr(A) = tr(B).

8. For any positive integer k, Bk = (P−1AP ) (P−1AP ) · · · (P−1AP ) = P−1AkP , and simi-
larly, for any polynomial p(x), we have p(B) = P−1p(A)P . So p(A) ∼ p(B).

(b) Let

A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , B =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

Then A,B share all the quantities listed in (a), but A 6∼ B as A2 6= 0, B2 = 0.

6. (a) For any α, β, γ ∈ F \ 0, let Tαβγ be the diagonal matrix with diagonal entries α, β, γ.
Check that

TαβγM(a, b)T−1αβγ = M(βα−1a, γα−1b).

Hence the assertion of the question.

Observe that N − I has rank 2, while M(a, b)− I has rank 1. Hence N 6∼M(a, b).

7. Let p(x) = xr + ar−1x
r−1 + · · ·+ a0, so that

C(p(x)) =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2

· · ·
0 0 0 · · · 1 −ar−1

 .



We show that this has characteristic poly p(x). The proof goes by induction on n. The char
poly is

c(x) = det


x 0 0 · · · 0 a0
−1 x 0 · · · 0 a1

· · ·
0 0 0 · · · −1 x+ an−1


Expand by the first row. By induction the det of the 11-minor is xn−1 + an−1x

n−2 + · · ·+ a1, so
we get

c(x) = x (xn−1+an−1x
n−2+· · ·+a1)+(−1)n−1a0.(−1)n−1 = xn+an−1x

n−1+· · ·+a1x+a0 = p(x).

Hence the result by induction.


