
Linear Algebra MATH 50003

Solutions to Problem Sheet 10

1. To simplify notation, for v ∈ V denote by [v] the column vector [v]B. We know from
lectures that (u, v) = [u]TA[v].

Suppose A is not invertible. Then A has 0 as an evalue, so there exists nonzero
w ∈ V such that A[w] = 0. Then (v, w) = [v]TA[w] = 0 for all v, so w ∈ V ⊥. Hence ( , )
is degenerate.

Now suppose ( , ) is degenerate, so there exists a nonzero vector w ∈ V ⊥. Then for
all v ∈ V we have (v, w) = [v]TA[w] = 0. Taking [v] to be standard basis vectors, we see
that this forces A[w] = 0, hence A is not invertible.

2. (i) This is an inner product (Chapter 14), so is symmetric bilinear and non-degenerate.

(ii) This is not bilinear (eg. (f1 + f2, g) 6= (f1, g) + (f2, g)).

(iii) This is symmetric bilinear. It is degenerate, since V ⊥ = {f ∈ V : f(1) = 0}.
(iv) This is skew-symmetric bilinear. It is non-degenerate: work out the matrix of

( , ) wrt the standard basis 1, x, x2, x3 - this is
0 2 2 3
−2 0 1 2
−2 −1 0 1
−3 −2 −1 0

 .

Check this is invertible.

3. (i) The form (A,B) = tr(AB) is bilinear, and is symmetric as tr(AB) = tr(BA). To
show it is non-degenerate, for 1 ≤ i, j ≤ 2, let Eij be the matrix with 1 in the ij-entry
and 0 elsewhere. If A ∈ V ⊥, then tr(AEij) = 0 for all i, j, and it is easy to see from this
that A = 0.

(ii) An orthogonal basis is v1, v2, v3, v4 where v1 = E11, v2 = E22, v3 = E12 + E21,
v4 = E12 − E21.

(iii) When char(F ) = 2 there is an orthonormal basis, namely E11 +E21, E11 +E12 +
E21, E11 + E12, E22.

4. Let A be invertible and skew-symmetric over R. By Cor 16.5 of lectures, there is an
invertible real matrix P such that P TAP = Jm, a block-diagonal sum of 2× 2 matrices(

0 1
−1 0

)
. Taking determinants, det(P )2 det(A) = det(Jm) = 1. Hence det(A) =

1/det(P )2 > 0.

5. (i) |A| = −5, so A is invertible provided p 6= 5.

(ii) (e1, e1) = 1, so take e1 as the first basis vector. Next, eT1Ay = y1 + 2y2 − 3y3, so
e⊥1 = {y ∈ V : y1 +2y2−3y3 = 0}. This contains v2 = 2e1−e2, and (v2, v2) = 1. Finally,
vT2 Ay = −y2− 2y3. Hence (Sp(e1, v2))

⊥ contains v3 = 7e1− 2e2 + e3, and (v3, v3) = −5.
So e1, v2, v3 is an orthogonal basis.

The matrix P with these columns satisfies P TAP = diag(1, 1,−5).

(iii) If −5 = α2, then (α−1v3, α
−1v3) = 1, so e1, v2, α

−1v3 is an orthonormal basis.

Conversely, if there exists an orthonormal basis, then ∃Q such that A = QTQ, so
taking dets, −5 = det(Q)2, and so −5 is a square.



6. (i) We have Q(x) = xTAx, where

A =

 1 3
2 −1

2
3
2 1 3
−1

2 3 −1

 .

As in the previous question we find an orthogonal basis for the corresponding symmetric
bilnear form (x, y) = xTAy. Here is one: v1, v2, v3, where v1 = e1, v2 = 3e1 − 2e2,
v3 = −4e1 + 3e2 + e3. Since Q((v1) = 1, Q(v2) = −5, Q(v3) = 10, Q is equivalent to Q′

where
Q′(x) = x21 − 5x22 + 10x23.

(ii) As Q ∼ Q′ they take the same values in Q. Clearly Q′(x) = 1 has a solution
x = (1, 0, 0), and Q′(x) = −1 has a solution x = (12 ,

1
2 , 0).

(iii) This is tricky. The answer is no. Here is an argument.

Suppose x 6= 0 is a solution of Q′(x) = 0. Then clearing denominators, there are
integers a, b, c such that a2 − 5b2 + 10c2 = 0 (and not all of a, b, c are 0). Then 5 divides
a, say a = 5d, so we get

5d2 − b2 + 2c2 = 0.

Hence b2 = 5d2 + 2c2 (where b, c, d ∈ Z). If b, c, d have a common factor greater than
1, we can divide through by the square of this; so we may assume that b, c, d have no
common factor greater than 1.

Consider congruences modulo 8. Any square is 0,1 or 4 mod 8. If b is odd then d is
odd, so modulo 8 we get b2 ≡ 1, whereas 5d2 + 2c2 ≡ 5 + 2k where k = 0, 1 or 4. This is
impossible.

If b is even then d is even, and since b, c, d have no common factor, c is odd. Then
modulo 8, we have b2 ≡ 0 or 4, whereas 5d2 + 2c2 ≡ (0 or 4) + 2, again a contradiction.

7. We are given v 6= 0 such that Q(v) = 0. Let ( , ) be the corresponding symmetric
bilinear form. Since ( , ) is non-degenerate, there exists w ∈ V such that (v, w) 6= 0, say
(v, w) = λ. Then for α ∈ F we have Q(αv + w) = (αv + w,αv + w) = 2αλ + Q(w,w).
Since λ 6= 0, this takes all values in F as α varies over F .

8. (i) Let S = {α2 : α ∈ F×}. This is easily seen to be a subgroup of F×. Consider the
map φ : F× → S sending α→ α2. This is a homomorphism with kernel {α : α2 = 1} =
{±1} of order 2. Hence |S| = |Im(φ)| = |F×|/|ker(φ)| = 1

2(p− 1).

(ii) Let X = {ax2 : x ∈ F}, Y = {−by2 + c : y ∈ F}. By (i), X and Y both have size
1
2(p − 1) + 1 (the extra 1 for the zero element of F ). So X and Y both have size more
than 1

2 |F |, and hence they intersect in a non-empty set. So there exist x, y ∈ F such
that ax2 = −by2 + c.

(iii) Let n = dimV ≥ 3 and Q : V → F a non-degenerate quadratic form. By Thm
16.6 of lectures, Q is equivalent to a quadratic form Q′(x) = ax21 + bx22 + cx23 + · · ·+dx2n,
where a, b, c, . . . , d 6= 0. Take x3 = 1 and xi = 0 for i ≥ 4. By (ii) there exist values of
x1, x2 such that ax21 + bx22 + c = 0. Then Q(x) = 0.

(iv) Let α ∈ F× \ S, a non-square. Then for the quadratic form Q(x) = x21 − αx22 ,
there are no nonzero vectors x for which Q(x) = 0.


