1. Let V be a finite-dimensional vector space over a field F, and let (,) be a symmetric or skewsymmetric bilinear form on V. Let B be a basis of V, and let A be the matrix of (,) with respect to B. Prove that (,) is non-degenerate if and only if A is invertible.

2. Let V be the vector space over \mathbb{R} consisting of polynomials in x of degree at most 3. Which of the following are bilinear forms on V? Which of these are symmetric, skew-symmetric or non-degenerate?

(i)
$$(f,g) = \int_0^1 f(x)g(x) dx$$
 for all $f,g \in V$
(ii) $(f,g) = f(1) + g(1)$ for all $f,g \in V$
(iii) $(f,g) = f(1)g(1)$ for all $f,g \in V$
(iv) $(f,g) = f(1)g'(1) - f'(1)g(1) + f(0)g'(0) - f'(0)g(0)$ for all $f,g \in V$

3. Let $V = M_2(F)$ be the vector space of all 2×2 matrices over a field F, and for $A, B \in V$ define

$$(A,B) = \operatorname{tr}(AB),$$

the trace of AB.

- (i) Show that (,) is a non-degenerate symmetric bilinear form on V.
- (ii) Assuming that $char(F) \neq 2$, find an orthogonal basis of V.
- (iii) Does V have an orthogonal basis when char(F) = 2?
- **4.** Let A be an invertible skew-symmetric real matrix. Prove that det(A) > 0.

5. Let p > 2 be a prime, let $V = (\mathbb{F}_p)^3$, and let (,) be the symmetric bilinear form on V defined by $(x, y) = x^T A y$ for $x, y \in V$, where

$$A = \begin{pmatrix} 1 & 2 & -3\\ 2 & 5 & -4\\ -3 & -4 & 8 \end{pmatrix}$$

(i) For which values of p is the form (,) non-degenerate?

(ii) Assume (,) is non-degenerate. Find an orthogonal basis of V, and find also a matrix P such that $P^T A P$ is diagonal.

(iii) Show that V has an orthonormal basis iff -5 is a nonzero square in \mathbb{F}_p (i.e $\exists \alpha \in \mathbb{F}_p \setminus 0$ such that $\alpha^2 = -5$).

6. Let $V = \mathbb{Q}^3$ and let Q be the quadratic form on V defined by

 $Q(x) = x_1^2 + x_2^2 - x_3^2 + 3x_1x_2 - x_1x_3 + 6x_2x_3 \quad \text{for } x = (x_1, x_2, x_3)^T \in V.$

(i) Find a quadratic form Q' that is equivalent to Q over \mathbb{Q} , of the form $Q'(x) = \alpha_1 x_1^2 + \alpha_2 x_2^2 + \alpha_3 x_3^2$.

(ii) Do the equations Q(x) = 1, Q(x) = -1 have solutions $x \in \mathbb{Q}^3$?

(iii) Does the equation Q(x) = 0 have a nonzero solution $x \in \mathbb{Q}^3$? (*Hint*: clear denominators to get an equation in integer squares, and consider congruences modulo 8.)

7. Let F be a field, V a finite-dimensional vector space over F, and $Q: V \to F$ a non-degenerate quadratic form. Suppose there exists a nonzero vector $v \in V$ such that Q(v) = 0. Prove that Q is surjective.

(*Hint*: show $\exists w \in V$ such that $(v, w) \neq 0$ and consider vectors $\alpha v + w$.)

- 8. Let p > 2 be a prime, and let $F = \mathbb{F}_p$. Denote by F^{\times} the multiplicative group $F \setminus 0$ of order p 1. (i) Show that the set of squares $\{\alpha^2 : \alpha \in F^{\times}\}$ is a subgroup of F^{\times} of order $\frac{1}{2}(p-1)$.
 - (ii) Let $a, b, c \in F^{\times}$. Show that there is a solution $x, y \in F$ to the equation

$$ax^2 + by^2 = c.$$

(*Hint*: consider the sets $\{ax^2 : x \in F\}$ and $\{-by^2 + c : y \in F\}$ and work out their sizes. What can you deduce from this?)

(iii) Using part (ii), prove that if V is a vector space over F of dimension at least 3, and $Q: V \to F$ is a non-degenerate quadratic form, then there exists a nonzero vector $v \in V$ such that Q(v) = 0.

(iv) Give an example to show that the conclusion of (iii) does not necessarily hold if dim V = 2.