
LINEAR ALGEBRA MATH 50003 Solutions to Problem Sheet 2

1. (a) W + v = W + v′ ⇒ v ∈W + v′ ⇒ ∃w ∈Ws.t.v = w + v′ ⇒ v − v′ = w ∈W .

Conversely, v − v′ = w ∈W ⇒ ∀w0 ∈W,w0 + v = w0 + w + v′ and w0 + v′ = w0 − w + v ⇒
W + v ⊆W + v′ and W + v′ ⊆W + v.

(b) Linear indep: suppose
∑r

1 αiwi +
∑s

1 βjvj = 0. The first sum is in W , so this gives∑s
1 βj(W + vj) = W (the zero vector in V/W ). Hence βj = 0 for all j. Then

∑r
1 αiwi = 0, so

αi = 0 for all i also.

Span: let v ∈ V . Then W + v ∈ V/w, so ∃λj such that W + v =
∑s

1 λj(W + vj). Hence
v = w +

∑s
1 λjvj for some w ∈W , so ∃µi such that v =

∑r
1 µiwi +

∑s
1 λjvj .

(c) Let X be a subspace of V/W , and define Y = {v ∈ V : W +v ∈ X}. Show Y is a subspace
of V containing W . Clearly X = Y/W .

2. (i) Observe that v1 = e1 + e2 + e3 + e4 is an eigenvector (Av1 = −v1), and Ae1 = −e1 − v1.
So the 2-dim subspace W = Sp(e1, v1) is T -invariant.

(ii) Take BW = {e1, v1} and V = {e1, v1, e3, e4}.

(iii) [TW ]BW
=

(
−1 0
−1 −1

)
, [T̄ ]B̄ =

(
−2 1
−1 0

)
.

3. Let w1, . . . , wr be a basis of W , and extend to a basis w1, . . . , wr, v1, . . . , vs of V . Let X =
Sp(v1, . . . , vs). Clearly V = W +X. Also W ∩X = 0, since if w ∈W ∩X then w =

∑r
1 αiwi =∑s

1 βjvj , which implies all αi, βj are 0 by the linear independence of w1, . . . , wr, v1, . . . , vs. Hence
V = W ⊕X.

(b) Let v ∈ V . As V = Y ⊕ Z, we have v = y + z for unique vectors y ∈ Y, z ∈ Z. Also
y = y1 + · · ·+yr, z = z1 + · · ·+zs for unique yi ∈ Yi, zj ∈ Zj . Hence v = y1 + · · ·+yr+z1 + · · ·+zs
with uniqueness, so V = Y1 ⊕ · · · ⊕ Zs.

4. (a) Let U = T (V ),W = ker(T ). For v ∈ V , v = T (v) + (v − T (v)) and the second term is in
W as T (v− T (v)) = T (v)− T 2(v)− 0. Hence V = U +W . Also if v ∈ U ∩W then v = T (x) for
some x, and 0 = T (v) = T 2(x) = T (x) = v. So U ∩W = 0 and V = U ⊕W . Both U and W are
T -invariant, TW = 0 and for v = T (x) ∈ U , T (v) = T 2(x) = T (x) = v, so TU = IU .

(b) U = Sp(e1 + e2, e1 + e3), W = Sp(e1 + e2 + e3).

5. (i) If p(x) has degree ≤ r, so does p′(x). Hence Vr is S-invariant.

(ii) Let W be an S-invariant subspace, and assume W 6= 0. Letf(x) be a poly of maximal
degree in W , and write f(x) = arx

r + · · ·+ a0, where ar 6= 0. Then Sr(f(x)) = f (r)(x) = r!ar ∈
W , and hence the constant poly 1 ∈ W . Next, Sr−1(f(x)) = r! arx + (r − 1)!ar−1 3 W , and
hence x ∈W . Continuing like this, we see that x2, . . . , xr ∈W . Hence W = Vr.

(iii) For example T (x) = x, so Sp(x) is a T -invariant subspace not equal to Vr.

(iv) If B is the basis 1, x, . . . , xn then [T ]B = diag(0, 1, 2, . . . , n− 1). Thus the eigenspaces of
T are all 1-dimensional, and are the subspaces Sp(xi) for i = 0, . . . , n. If W is a T -invariant sub-
space, the restriction TW has char poly dividing that of T (Prop 5.4), so TW is also diagonalisable
and W is a sum of eigenspaces. Hence W = Sp(xi1 , . . . , xir ) for some i1, . . . , ir. There are only
finitely many choices for the set {i1, . . . , ir}, so there are finitely many T -invariant subspaces.

6. (a) (i) xIn −A = (xIn1
−A1)⊕ · · · ⊕ (xInr

−Ar), and taking determinants gives (i).

(ii) dimEλ(A) = n− rank(A− λIn) =
∑r

1(ni − rank(Ai − λIni
)) =

∑
dimEλ(Ai).

(iii) Let A = A1 ⊕ A2 and let T be the linear map v → Av for v ∈ V = Fn. So if B is
the standard basis e1, . . . , en1

, en1+1, . . . , en then [T ]B = A. Changing the order of the basis to
B′ = en1+1, . . . , en, e1, . . . , en1

, we get [T ]B′ = A2⊕A1. Hence this is similar to A. The case of a
general permutation π can be deduced from this by expressing π as a product of transpositions
(i j).

(b) (i) v ∈ ker f(T )⇒ f(T )(T (v)) = Tf(T )(v) = 0⇒ T (v) ∈ ker f(T ).

And v ∈ f(T )(V )⇒ v = f(T )(w)⇒ T (v) = Tf(T )(w) = f(T )T (w) ∈ f(T )(V ).

(ii) If v ∈ V then v = v1 + · · · + vr with vi ∈ Vi, so f(T )(v) = f(T )(v1) + · · · + f(T )(vr),



and f(T )(vi) ∈ Vi as Vi is T -invariant. This expression is unique since V = V1⊕ · · · ⊕ Vr. Hence
result.

7. Using the algorithm for triangularising given in the lecture notes, the following P ’s work:

P =

(
1 0
−1 1

)
,

 1 0 0
1 1 0
0 0 1

 ,

 0 1 0
1 1 0
1 0 1

 .

(Many other P ’s work of course).

8. (a) Suppose T is triangularisable, and let B = v1, . . . , vn be a basis such that [T ]B is upper
triangular. For 1 ≤ i ≤ n let Vi = Sp(v1, . . . , vi). Then dimVi = i. Vi ⊂ Vi+1 and each Vi is
T -invariant.

Conversely, suppose V1 ⊂ · · · ⊂ Vn are T -invariant with dimVi = i. Let v1 be a basis of V1,
extend to a basis v1, v2 of V2, and so on, until we have a basis B = v1, . . . , vn of V such that
v1, . . . , vi is a basis of Vi for each i. Then [T ]B is upper triangular.

(b) Let A be upper triangular invertible, and for 1 ≤ i ≤ n let Vi = Sp(e1, . . . , ei). Then
V1 ⊂ · · · ⊂ Vn are A-invariant with dimVi = i. Since A is invertible, AVi = Vi, and so
Vi = A−1Vi, so the Vi are also A−1-invariant. Hence as in (a), A−1 is also upper triangular.


