LINEAR ALGEBRA MATH 50003 Solutions to Problem Sheet 2

1. Q) WHov=W+v =veW4+v=>TJweWstv=w+v =>v—-0v =weW.

Conversely, v —v' =w e W = VYwy € W,wyg +v =wo +w+v and wg +v' = wyg —w +v =
W+oCW+o and W+o' CW +w.

(b) Linear indep: suppose Y ; a;w; + ».; B;v; = 0. The first sum is in W, so this gives
31 8;(W +v;) = W (the zero vector in V/W). Hence 8; = 0 for all j. Then Y | ayw; = 0, so
«; = 0 for all 7 also.

Span: let v € V. Then W +v € V/w, so 3\; such that W 4+ v = 7 X\;(W + v;). Hence
v=w+ Y ] A\v; for some w € W, so 3y, such that v =37 psw; + 37 A\jvj.

(c) Let X be a subspace of V/W, and defineY = {v € V: W+v € X}. Show Y is a subspace
of V containing W. Clearly X =Y/W.

2. (i) Observe that v1 = e1 + €2 + e3 + e4 is an eigenvector (Av; = —wvy), and Aey = —e; — vy.
So the 2-dim subspace W = Sp(ey,v1) is T-invariant.

(ii) Take By = {e1,v1} and V = {e1, v1, €3, e4).
i trwlo = (23 O ) s = (5 ¢):

3. Let wy,...,w, be a basis of W, and extend to a basis w1, ..., w,,v1,...,vs of V. Let X =
Sp(vi,...,vs). Clearly V. =W + X. Also WNX =0, since if w € WNX then w =] aw; =
>-1 Bjv;, which implies all a;, 8; are 0 by the linear independence of wy, ..., w,, vy, ..., vs. Hence
V=weaX.

(b) Let v e V. AsV =Y @ Z, we have v = y + z for unique vectors y € Y,z € Z. Also
y=uy+-+yr, 2 =21+-+2z forunique y; € Y;,2; € Z;. Hencev =y +---+y,+21+---+2
with uniqueness, so V=Y, ®--- P Z.

4. (a) Let U=T(V),W =ker(T). Forve V,v=T(v) + (v—T(v)) and the second term is in
W as T(v—T(v)) =T(v) —T?(v) — 0. Hence V.=U +W. Also if v € UNW then v = T(z) for
some z, and 0 = T(v) = T?(z) =T(x) =v. SoUNW =0and V =U ®W. Both U and W are
T-invariant, Ty = 0 and for v = T(x) € U, T(v) = T?*(z) = T(x) = v, so Ty = I.

(b) U = Sp(ey + ea,e1 +e3), W =Sp(er + ex + e3).

5. (i) If p(x) has degree < r, so does p(x). Hence V, is S-invariant.

(ii) Let W be an S-invariant subspace, and assume W # 0. Letf(x) be a poly of maximal
degree in W, and write f(z) = a,2" + - - - + ag, where a, # 0. Then S”(f(z)) = f")(z) = rla, €
W, and hence the constant poly 1 € W. Next, S"~!(f(z)) = ra,x + (r — 1)la,—1; > W, and
hence x € W. Continuing like this, we see that z2,...,2" € W. Hence W =V,..

(iii) For example T'(z) = z, so Sp(x) is a T-invariant subspace not equal to V.

(iv) If B is the basis 1,z,...,z™ then [T]|p = diag(0,1,2,...,n — 1). Thus the eigenspaces of
T are all 1-dimensional, and are the subspaces Sp(z*) for i = 0,...,n. If W is a T-invariant sub-
space, the restriction Ty has char poly dividing that of T' (Prop 5.4), so Ty is also diagonalisable
and W is a sum of eigenspaces. Hence W = Sp(z®,...,z%) for some iy,...,i.. There are only
finitely many choices for the set {ii,...,%,}, so there are finitely many T-invariant subspaces.

6. (a) (i) al, — A= (zl,, — A1) ® - @ (zl,, — A,), and taking determinants gives (i).

(ii) dim E)(A4) = n — rank(A — M,,) = Y | (n; — rank(4; — \I,,,)) = > dim E)(4;).

(iii) Let A = Ay @ As and let T be the linear map v — Av for v € V.= F™. So if B is
the standard basis ej,...,en,,€n,41,-- ., €, then [T]p = A. Changing the order of the basis to
B =€, 41,y €ns€1,.-.,€n,, we get [T]p = Ay ® A;. Hence this is similar to A. The case of a
general permutation 7 can be deduced from this by expressing 7 as a product of transpositions

(29)-
(b) (i) v e ker f(T) = f(T)(T(v)) =Tf(T)(v) =0= T(v) € ker f(T).
And v e f(T)(V) = v = f(T)(w) = T(v) = T(T)(w) = f(T)T(w) € F(T)(V).
(ii) If v € V then v = v1 4+ -+ + v, with v; € Vi, so f(T)(v) = f(T)(v1) + -+ + f(T)(vy),



and f(T)(v;) € V; as V; is T-invariant. This expression is unique since V.=V, & --- @ V,.. Hence
result.

7. Using the algorithm for triangularising given in the lecture notes, the following P’s work:

1 00 01 0
P:<_11(1)>, 1 1 0],(1 10
00 1 1 0 1

(Many other P’s work of course).

8. (a) Suppose T is triangularisable, and let B = vy,...,v, be a basis such that [T]p is upper
triangular. For 1 < i < n let V; = Sp(v1,...,v;). Then dimV; = i. V; C V;4; and each V; is
T-invariant.

Conversely, suppose Vi C --- C V,, are T-invariant with dim V; = 4. Let v; be a basis of V1,

extend to a basis vy, v9 of V5, and so on, until we have a basis B = vq,...,v, of V such that
v1,...,0; is a basis of V; for each i. Then [T]p is upper triangular.

(b) Let A be upper triangular invertible, and for 1 < i < n let V; = Sp(es,...,e;). Then
Vi ¢ --- C V, are A-invariant with dimV; = 4. Since A is invertible, AV; = V;, and so

V; = A=V}, so the V; are also A~!-invariant. Hence as in (a), A~ is also upper triangular.



