LINEAR ALGEBRA MATH 50003 Problem Sheet 2

- 1. Let V be a finite-dimensional vector space, and let W be a subspace of V .
	- (a) For $v, v' \in V$, show that $W + v = W + v' \Leftrightarrow v v' \in W$.
	- (b) Let $\{w_1, \ldots, w_r\}$ be a basis of W, and $\{W + v_1, \ldots, W + v_s\}$ be a basis of V/W . Prove that $\{w_1, \ldots, w_r, v_1, \ldots, v_s\}$ is a basis of V.
	- (c) Prove that every subspace of the quotient space V/W is of the form Y/W , where Y is a subspace of V containing W .
- **2.** Let $V = \mathbb{R}^4$, and let $T: V \to V$ be the linear map $v \to Av$, where

$$
A = \begin{pmatrix} -2 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -1 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 \end{pmatrix}.
$$

- (i) Find a 2-dimensional T-invariant subspace W of V .
- (ii) Find a basis B_W of W, and a basis B of V containing B_W .
- (iii) Compute the matrices $[T_W]_{B_W}$, $[T]_{\bar{B}}$ and $[T]_B$ (where as in lectures, $T_W : W \to W$ is the restriction of T to W, and $\overline{T}: V/W \to V/W$ is the quotient map).
- 3. Let V be a finite-dimensional vector space.
	- (a) Let W be a subspace of V. Show that there exists another subspace X of V such that $V = W \oplus X$.
	- (b) Suppose that Y and Z are subspaces of V satisfying the following conditions:

 $V = Y \oplus Z$. $Y = Y_1 \oplus \cdots \oplus Y_r$ for some subspaces Y_i of Y. $Z = Z_1 \oplus \cdots \oplus Z_s$ for some subspaces Z_i of Z.

Prove that $V = Y_1 \oplus \cdots \oplus Y_r \oplus Z_1 \oplus \cdots \oplus Z_s$. (This is not quite as obvious as it looks – you need to use the definition of a direct sum.)

4. (a) Let V be a finite-dimensional vector space, and let $T: V \to V$ be a linear map such that $T^2 = T$. Prove that there are T-invariant subspaces U, W of V such that $V = U \oplus W$, and the restrictions $T_U = I_U$, $T_W = 0$.

(b) Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(v) =$ $\sqrt{ }$ $\overline{1}$ $2 -1 -1$ 1 0 −1 1 ⁻¹ 0 \setminus v for $v \in \mathbb{R}^3$. Verify that $T^2 = T$, and find

subspaces U, W of \mathbb{R}^3 as in part (a).

5. Let $n \geq 1$, and let V_n be the vector space over R consisting of all polynomials in x of degree at most n. Define linear maps $S, T: V_n \to V_n$ by

$$
S(p(x)) = p'(x), T(p(x)) = x p'(x)
$$

for all $p(x) \in V_n$ (where $p'(x)$ denotes the derivative of $p(x)$).

- (i) For $r \leq n$, show that V_r is an S-invariant subspace of V_n .
- (ii) Let W be an S-invariant subspace of V_n . Prove that $W = V_r$ for some r.
- (iii) Find a T-invariant subspace of V_n that is not equal to V_r for any r.
- (iv) Prove that there are only finitely many T-invariant subspaces of V_n .

6. (a) Let $A = A_1 \oplus \cdots \oplus A_r$, a block-diagonal matrix (where each A_i is $n_i \times n_i$). Let $c_A(x)$ be the characteristic polynomial of A, and for a scalar λ , let $E_{\lambda}(A)$ be the λ -eigenspace ker(A – λI). Prove that

(i) $c_A(x) = \prod_{i=1}^r c_{A_i}(x),$

(ii) for any scalar λ , dim $E_{\lambda}(A) = \sum_{i=1}^{r} \dim E_{\lambda}(A_i)$

(iii) for any permutation π of $\{1,\ldots,r\}$, A is similar to $A_{\pi(1)}\oplus\cdots\oplus A_{\pi(r)}$. (Start by showing that $A_1 \oplus A_2 \sim A_2 \oplus A_1.$

(b) Let V be finite-dimensional over a field F, and $T: V \to V$ a linear map. Let $f(x) \in F[x]$ be a polynomial.

(i) Prove that the subspaces ker($f(T)$) and $f(T)(V)$ (this is the same as Im($f(T)$)) are both Tinvariant.

(ii) Suppose $V = V_1 \oplus \cdots \oplus V_r$, where each V_i is T-invariant. Prove that $f(T)(V) = f(T)(V_1) \oplus$ $\cdots \oplus f(T)(V_r)$.

7. For each of the following matrices A, find an invertible matrix P over $\mathbb C$ such that $P^{-1}AP$ is upper triangular:

$$
A = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}
$$

8. (a) Let V be an *n*-dimensional vector space and $T: V \to V$ a linear map. Say that T is *triangularisable* if there exists a basis B of V such that $[T]_B$ is an upper triangular matrix.

Prove that T is triangularisable if and only if there is a sequence of subspaces V_1, \ldots, V_n such that $V_1 \subset V_2 \subset \cdots \subset V_n$, each V_i is T-invariant, and dim $V_i = i$ for all i.

(b) Let A be an invertible upper triangular matrix over a field F. Prove that A^{-1} is also upper triangular.