1. (a) Eg. the companion matrix of this poly.

(b) Multiplying through by A, we get $I = A^4 + A^2 + A$, so we want A to satisfy the poly $x^4 + x^2 + x - 1$. Choose A to be the companion matrix of this poly.

(c) Here we need $2A^4 + 2A = I$. Since $2 = -1$ in the field \mathbb{F}_3 , this can be written as $A^4 + A + I = 0$. Let C be the 4×4 companion matrix over \mathbb{F}_3 of the poly $x^4 + x + 1$. Notice that $1 \in \mathbb{F}_3$ is a root of this poly. So a 5×5 matrix over \mathbb{F}_3 which satisfies the poly is the block-diagonal $C \oplus (1)$.

(d) We want A to satisfy the poly $x^7 + 1$. This factorizes over \mathbb{F}_2 as $(x+1)(x^3 + x + 1)(x^3 + x + 1)$ $x^2 + 1$). So take A to be the companion matrix of one of the cubic factors, say $x^3 + x + 1$.

(e) We have the factorization $x^{n}-1 = (x-1)(x^{n-1}+\cdots+x+1)$. Take A to be the companion matrix of the second factor.

2. Let $c(x)$ be the char poly of A. By Cayley-Hamilton, $c(A) = 0$, and we are also given that $A^k = 0$. So A satisfies the polys $c(x)$ and x^k . If $d(x)$ is the gcd of these polys then $d(x) = r(x)c(x) + s(x)x^k$ for some polys $r, s \in F[x]$. Hence A also satisfies $d(x)$. But $d(x)$ is just the highest power of x that divides $c(x)$, so $d(x) = x^r$ for some $r \leq n$. Hence $A^r = 0$, and so $A^n = A^r A^{n-r} = 0.$

3. (a) The char poly of A is $c(x) = (x - 1)^2(x - 2) = x^3 - 4x^2 + 5x - 2$. By Cayley-Hamilton, $c(A) = 0$, so $A(A^2 - 4A + 5I) = 2I$. Therefore $A^{-1} = p(A)$ where $p(x) = (x^2 - 4x + 5)/2$.

(b) From $c(A) = 0$ we get $A^4 = 4A^3 - 5A^2 + 2A = 4(4A^2 - 5A + 2I) - 5A^2 + 2A =$ $11A^2 - 18A + 8I$.

(c) From $c(A) = 0$ we get $A^3 - 4A^2 = -5A + 2I$. This has the same evectors as A, which has eigenspaces $E_1 = Sp(e_1, e_2 + e_3)$ and $E_2 = Sp(2e_1 + 3e_3 + 4e_4)$.

4. (a) Let A be upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$. So the characterictic poly of A is $p(x) = \prod_{i=1}^{n} (x - \lambda_i)$. Then $p(A) = (A - \lambda_1 I) \cdots (A - \lambda_n I)$. Note that the *i*th factor $A - \lambda_i I$ in this product is upper triangular, and has its ith diagonal entry equal to 0. Now argue by induction on i that the product of the first i factors $(A - \lambda_1 I) \cdots (A - \lambda_i I)$ has its first i columns all equal 0 (the zero column vector): this is true for $i = 1$, and the induction step is just a matter of observing that the product of a matrix with its first i columns 0 and an upper triangular matrix with $i + 1$ st diagonal entry 0 has its first $i + 1$ cols 0. Hence $p(A)$ has its first n cols 0, ie. $p(A) = 0$, as required.

(b) Let A be an $n \times n$ matrix over $\mathbb C$ with char poly $p(x)$. By the Triangularisation Thm, \exists P such that $B = P^{-1}AP$ is upper triangular. Then B also has char poly $p(x)$, and by (a) we have $p(B) = 0$. As $p(A) = Pp(B)P^{-1}$, it follows that $p(A) = 0$.

5. (a) The *ii*-entry of AB is $\sum_{j=1}^{n} a_{ij} b_{ji}$, so

$$
\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji}.
$$

Similarly $tr(BA) = \sum_{k=1}^{n} \sum_{l=1}^{n} b_{kl} a_{lk}$. Chnaging the order of summation this is $\sum_{l=1}^{n} \sum_{k=1}^{n} a_{lk} b_{kl}$, and this is $tr(AB)$.

(b) Let $C = AB$, so $C^2 = 0$. Cayley-Hamilton gives $C^2 - \text{tr}(C) C + (\text{det } C) I = 0$. Since $C^2 = 0$ and det $C = 0$, this gives $\text{tr}(C) C = 0$. So either $\text{tr}(C) = 0$ or $C = 0$, and in either case $tr(C) = 0.$

So $tr(C) = tr(AB) = 0$. By (a) therefore, $tr(BA) = 0$. Now Cayley-Hamilton for BA gives

$$
(BA)2 - tr(BA)BA + (\det BA)I = 0.
$$

Since $tr(BA) = det BA = 0$, this implies $(BA)^2 = 0$.

(c) Not true for
$$
3 \times 3
$$
, eg. $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

6. (a) Suppose both d and d' are gcd's of f, g. Then as d' divides both f and g, we have d/d' . Similalry $d' | d$. Therefore $d' = \lambda d$ for some scalar λ .

(b) Let $d = \gcd(f, g)$, and let $r, s \in F[x]$ be such that $d = rf + sg$. Define $l = fg/d$. As $d|g$, $g/d \in F[x]$ and so $f|l$, and similarly g|l. Now let $k \in F[x]$ be a poly that is divisible by f and g. We need to show that $l|k$, or equivalently, that $fg|dk$. Now $dk = k(rf + sg)$, and both kf and kg are divisible by fg . Hence $fg|dk$, as required.

7. gcd is $x + 2$, and $x + 2 = \frac{1}{4}(f - (x + 1)g)$.

8. (a) Let $f(x) \in \mathbb{R}[x]$ be irreducible. Over \mathbb{C} , $f(x)$ factorizes as $\prod (x - \alpha_i) \prod (x - \beta_i)(x - \overline{\beta}_i)$, where α_i are the real roots and β_i , $\bar{\beta}_i$ conjugate pairs of non-real roots. Note that $(x - \beta_i)(x - \bar{\beta}_i)$ is a real quadratic. Hence as f is irreducible, either $f(x) = x-\alpha$ with α real, or $f(x) = (x-\beta)(x-\overline{\beta})$ with β non-real.

(b) $x^4 + x^3 + 1$, $x^4 + x + 1$, $x^4 + x^3 + x^2 + x + 1$

(c) Monic quadratic irreds over \mathbb{F}_3 : $x^2 + 1$, $x^2 + x - 1$, $x^2 - x - 1$

- (d) An irred cubic over \mathbb{F}_5 : $x^3 + x + 1$ (has no roots in \mathbb{F}_5)
- (e) Over \mathbb{F}_2 , $x^4 + 1 = (x+1)^4$
- (f) $x^7 + 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$

9. (a) Let $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, where $a_i \in \mathbb{Z}$ for all i. Let $\alpha = r/s$ be a root of $p(x)$, where r, s are integers, and suppose for a contradiction that $\alpha \notin \mathbb{Z}$. Then we can take it that r, s are coprime and $s > 1$. Then

$$
r^{n} = s^{n} (-a_{n-1}r^{n-1}/s^{n-1} - \cdots - a_{1}r/s - a_{0}).
$$

The RHS is divisible by s, but the LHS is not (as r, s are coprime), a contradiction. Hence $\alpha \in \mathbb{Z}$.

(b) Suppose $x^3 + x + k$ is reducible over Q. Then it has a root α , which is in Z by (a). So $k = -\alpha^3 - \alpha$. Since k is a positive integer and $k \le 100$, the possible values of k are those with $\alpha = -1, -2, -3, -4,$ namely $k = 2, 10, 30, 68$.

(c) Suppose $p(x) = x^4 + x + 1$ is reducible in Q[x]. If it has a linear factor then it has a root in $\alpha \in \mathbb{Q}$, and then $\alpha \in \mathbb{Z}$ by (a). But then α divides the constant term 1 (as $\alpha^4 + \alpha + 1 = 0$), so $\alpha =$ ± 1 , neither of which is a root of $p(x)$. Hence $p(x)$ must factorize as a product of quadratics, and by Gauss's Lemma $(8.4(2))$ of lecture notes, it has factorization $p(x) = (x^2 + ax + b)(x^2 + cx + d)$, where the coeffs $a, b, c, d \in \mathbb{Z}$. Then

$$
a + c = 0, \ b + d + ac = 0, \ ad + bc = 1, \ bd = 1.
$$

From the last eqn, $b = d = 1$ or $b = d = -1$, from which the 3rd eqn gives $a + c = \pm 1$. This conflicts with the 1st eqn, contradiction. Hence $p(x)$ is irred in $\mathbb{O}[x]$.

10. Let A be $n \times n$ over $\mathbb C$ with $tr(A^i) = 0$ for all $i \geq 1$. By the Triangularisation Thm, $\exists P$ such that $B = P^{-1}AP$ is upper triangular. The diagonal entries of B are the eigenvalues. If these are all 0, then the char poly of A is x^n , so $A^n = 0$ by Cayley-Hamilton, which is the required result.

So assume now (for a contradiction) that A (and B) has at least one nonzero eigenvalue. Let the distinct evalues be $\lambda_1, \ldots, \lambda_r$ with multiplicities m_1, \ldots, m_r . Since similar matrices have the same trace (Q5 of Sheet 1), we have

$$
\operatorname{tr}(A^i) = \operatorname{tr}(B^i) = m_1 \lambda_1^i + \dots + m_r \lambda_r^i
$$

for each $i \geq 1$. These traces are all 0, so thinking of the m_i 's as variables, they give a solution of the system of linear equations

$$
\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_r^2 \\ \cdots & & \cdots & \\ \lambda_1^r & \lambda_2^r & \cdots & \lambda_r^r \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_r \end{pmatrix} = 0.
$$

The coefficient matrix is a Vandermonde matrix, and a well-known result (you probably saw this in the 1st year) states that this has determinant $\prod_{i=1}^{r} \lambda_i \prod_{i < j} (\lambda_i - \lambda_j)$. As the λ_i are distinct and nonzero, this det is nonzero, so the Vandermonde matrix is invertible, and the above system has only the zero solution. This is a contradiction, as the m_i are positive integers.