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1. (a) Eg. the companion matrix of this poly.

(b) Multiplying through by A, we get I = A4 + A2 + A, so we want A to satisfy the poly
x4 + x2 + x− 1. Choose A to be the companion matrix of this poly.

(c) Here we need 2A4 + 2A = I. Since 2 = −1 in the field F3, this can be written as
A4 + A + I = 0. Let C be the 4 × 4 companion matrix over F3 of the poly x4 + x + 1. Notice
that 1 ∈ F3 is a root of this poly. So a 5 × 5 matrix over F3 which satisfies the poly is the
block-diagonal C ⊕ (1).

(d) We want A to satisfy the poly x7 + 1. This factorizes over F2 as (x+ 1)(x3 + x+ 1)(x3 +
x2 + 1). So take A to be the companion matrix of one of the cubic factors, say x3 + x+ 1.

(e) We have the factorization xn−1 = (x−1)(xn−1+ · · ·+x+1). Take A to be the companion
matrix of the second factor.

2. Let c(x) be the char poly of A. By Cayley-Hamilton, c(A) = 0, and we are also given
that Ak = 0. So A satisfies the polys c(x) and xk. If d(x) is the gcd of these polys then
d(x) = r(x)c(x) + s(x)xk for some polys r, s ∈ F [x]. Hence A also satisfies d(x). But d(x) is just
the highest power of x that divides c(x), so d(x) = xr for some r ≤ n. Hence Ar = 0, and so
An = ArAn−r = 0.

3. (a) The char poly of A is c(x) = (x− 1)2(x− 2) = x3 − 4x2 + 5x− 2. By Cayley-Hamilton,
c(A) = 0, so A(A2 − 4A+ 5I) = 2I. Therefore A−1 = p(A) where p(x) = (x2 − 4x+ 5)/2.

(b) From c(A) = 0 we get A4 = 4A3 − 5A2 + 2A = 4(4A2 − 5A + 2I) − 5A2 + 2A =
11A2 − 18A+ 8I.

(c) From c(A) = 0 we get A3− 4A2 = −5A+ 2I. This has the same evectors as A, which has
eigenspaces E1 = Sp(e1, e2 + e3) and E2 = Sp(2e1 + 3e3 + 4e4).

4. (a) Let A be upper triangular with diagonal entries λ1, . . . , λn. So the characterictic poly
of A is p(x) =

∏n
1 (x − λi). Then p(A) = (A − λ1I) · · · (A − λnI). Note that the ith factor

A−λiI in this product is upper triangular, and has its ith diagonal entry equal to 0. Now argue
by induction on i that the product of the first i factors (A − λ1I) · · · (A − λiI) has its first i
columns all equal 0 (the zero column vector): this is true for i = 1, and the induction step is
just a matter of observing that the product of a matrix with its first i columns 0 and an upper
triangular matrix with i+ 1st diagonal entry 0 has its first i+ 1 cols 0. Hence p(A) has its first
n cols 0, ie. p(A) = 0, as required.

(b) Let A be an n× n matrix over C with char poly p(x). By the Triangularisation Thm, ∃
P such that B = P−1AP is upper triangular. Then B also has char poly p(x), and by (a) we
have p(B) = 0. As p(A) = Pp(B)P−1, it follows that p(A) = 0.

5. (a) The ii-entry of AB is
∑n

j=1 aijbji, so

tr(AB) =

n∑
i=1

n∑
j=1

aijbji.

Similarly tr(BA) =
∑n

k=1

∑n
l=1 bklalk. Chnaging the order of summation this is

∑n
l=1

∑n
k=1 alkbkl,

and this is tr(AB).

(b) Let C = AB, so C2 = 0. Cayley-Hamilton gives C2 − tr(C)C + (detC) I = 0. Since
C2 = 0 and detC = 0, this gives tr(C)C = 0. So either tr(C) = 0 or C = 0, and in either case
tr(C) = 0.

So tr(C) = tr(AB) = 0. By (a) therefore, tr(BA) = 0. Now Cayley-Hamilton for BA gives

(BA)2 − tr(BA)BA+ (detBA) I = 0.

Since tr(BA) = detBA = 0, this implies (BA)2 = 0.

(c) Not true for 3× 3, eg. A =

 0 1 0
1 0 0
0 0 0

, B =

 0 0 0
0 1 0
1 0 0

.



6. (a) Suppose both d and d′ are gcd’s of f, g. Then as d′ divides both f and g, we have d|d′.
Similalry d′|d. Therefore d′ = λd for some scalar λ.

(b) Let d = gcd(f, g), and let r, s ∈ F [x] be such that d = rf + sg. Define l = fg/d. As d|g,
g/d ∈ F [x] and so f |l, and similarly g|l. Now let k ∈ F [x] be a poly that is divisible by f and g.
We need to show that l|k, or equivalently, that fg|dk. Now dk = k(rf + sg), and both kf and
kg are divisible by fg. Hence fg|dk, as required.

7. gcd is x+ 2, and x+ 2 = 1
4 (f − (x+ 1)g).

8. (a) Let f(x) ∈ R[x] be irreducible. Over C, f(x) factorizes as
∏

(x−αi)
∏

(x−βi)(x−β̄i), where
αi are the real roots and βi, β̄i conjugate pairs of non-real roots. Note that (x− βi)(x− β̄i) is a
real quadratic. Hence as f is irreducible, either f(x) = x−α with α real, or f(x) = (x−β)(x− β̄)
with β non-real.

(b) x4 + x3 + 1, x4 + x+ 1, x4 + x3 + x2 + x+ 1

(c) Monic quadratic irreds over F3: x2 + 1, x2 + x− 1, x2 − x− 1

(d) An irred cubic over F5: x3 + x+ 1 (has no roots in F5)

(e) Over F2, x4 + 1 = (x+ 1)4

(f) x7 + 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

9. (a) Let p(x) = xn + an−1x
n−1 + · · · + a0, where ai ∈ Z for all i. Let α = r/s be a root of

p(x), where r, s are integers, and suppose for a contradiction that α 6∈ Z. Then we can take it
that r, s are coprime and s > 1. Then

rn = sn
(
−an−1rn−1/sn−1 − · · · − a1r/s− a0

)
.

The RHS is divisible by s, but the LHS is not (as r, s are coprime), a contradiction. Hence α ∈ Z.

(b) Suppose x3 + x + k is reducible over Q. Then it has a root α, which is in Z by (a). So
k = −α3 − α. Since k is a positive integer and k ≤ 100, the possible values of k are those with
α = −1,−2,−3,−4, namely k = 2, 10, 30, 68.

(c) Suppose p(x) = x4 +x+1 is reducible in Q[x]. If it has a linear factor then it has a root in
α ∈ Q, and then α ∈ Z by (a). But then α divides the constant term 1 (as α4+α+1 = 0), so α =
±1, neither of which is a root of p(x). Hence p(x) must factorize as a product of quadratics, and
by Gauss’s Lemma (8.4(2)) of lecture notes, it has factorization p(x) = (x2 +ax+b)(x2 +cx+d),
where the coeffs a, b, c, d ∈ Z. Then

a+ c = 0, b+ d+ ac = 0, ad+ bc = 1, bd = 1.

From the last eqn, b = d = 1 or b = d = −1, from which the 3rd eqn gives a + c = ±1. This
conflicts with the 1st eqn, contradiction. Hence p(x) is irred in Q[x].

10. Let A be n×n over C with tr(Ai) = 0 for all i ≥ 1. By the Triangularisation Thm, ∃ P such
that B = P−1AP is upper triangular. The diagonal entries of B are the eigenvalues. If these are
all 0, then the char poly of A is xn, so An = 0 by Cayley-Hamilton, which is the required result.

So assume now (for a contradiction) that A (and B) has at least one nonzero eigenvalue. Let
the distinct evalues be λ1, . . . , λr with multiplicities m1, . . . ,mr. Since similar matrices have the
same trace (Q5 of Sheet 1), we have

tr(Ai) = tr(Bi) = m1λ
i
1 + · · ·+mrλ

i
r

for each i ≥ 1. These traces are all 0, so thinking of the mi’s as variables, they give a solution
of the system of linear equations

λ1 λ2 · · · λr
λ21 λ22 · · · λ2r

· · ·
λr1 λr2 · · · λrr



m1

m2
...
mr

 = 0.

The coefficient matrix is a Vandermonde matrix, and a well-known result (you probably saw this
in the 1st year) states that this has determinant

∏r
1 λi

∏
i<j(λi−λj). As the λi are distinct and

nonzero, this det is nonzero, so the Vandermonde matrix is invertible, and the above system has
only the zero solution. This is a contradiction, as the mi are positive integers.


