Linear Algebra Math 50003

Problem Sheet 4

1. (a) Let $B = P^{-1}AP$. For any polynomial p(x), we have $p(B) = P^{-1}p(A)P$, so $p(A) = 0 \Leftrightarrow p(B) = 0$. So clearly $m_A(x) = m_B(x)$.

(b) Let $m(x) = \operatorname{lcm}(m_{A_1}(x), \dots, m_{A_k}(x))$. Observe that for any poly p(x) we have $p(A) = p(A_1) \oplus \dots \oplus p(A_k)$. As $m_{A_i}|m$ for all *i*, it follows that $m(A) = m(A_1) \oplus \dots \oplus m(A_k) = 0$. Also if p(A) = 0 then $p(A_i) = 0$ for all *i*, so $m_{A_i}|p$ for all *i*, hence m|p. Therefore $m = m_A$.

(c) The standard basis e_1, \ldots, e_n consists of evectors of A, so for each i there exists j such that $Ae_i = \lambda_j e_i$, and hence $\prod_{j=1}^k (A - \lambda_j I)e_i = 0$. Therefore $\prod_{j=1}^k (A - \lambda_j I) = 0$. As each λ_j must be a root of the min pol by 9.2 of lecs, it follows that $m_A(x) = \prod_{j=1}^k (x - \lambda_j)$.

(d) Suppose $T: V \to V$ is diagonalisable. Then by Cor 10.2 of lecs, $m_T(x) = \prod_{j=1}^{k} (x - \lambda_j)$, a product of distinct linear factors. If W is a T-invariant subspace, then m_{T_W} divides m_T by 9.4 of lecs, so m_{T_W} is also a product of distinct linear factors. Hence T_W is diagonalisable by 10.2.

2. (a) Let these matrices be A and B. Compute char poly $c_A(x) = (x-1)^3$ and $(A-I)^2 = 0$, so $m_A(x) = (x-1)^2$. Also $c_B(x) = x^3(x-4)$ and $m_B(x) = x(x-4)$.

(b) For the basis $B = \{1, x, x^2, x^3\}$, matrix $[T]_B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. So char pol $c_T(x) = x^4$. If $F = \mathbb{R}$ then $m_T(x) = x^4$; if $F = \mathbb{F}_2$ it is x^2 ; and if $F = \mathbb{F}_3$ it is x^3 .

3. (a) Let A = C(p(x)). We know from Sheet 1 qn that A has char poly p(x), so $m_A(x)|p(x)$. If e_1, \ldots, e_n is the standard basis, then this basis is $e_1, Ae_1, \ldots, A^{n-1}e_1$. These vectors are linearly indep, which means that there is no nonzero poly f(x) of degree $\leq n-1$ such that f(A) = 0. Hence m_A has degree n and $m_A(x) = p(x)$.

(b) (i) Here $c_A(x) = (x - \lambda)^n$. If $a_1, \ldots, a_{n-1} \neq 0$ then $e_n, Ae_n, \ldots, A^{n-1}e_n$ is a basis (consisting of nonzero multiplies of the standard basis), so as in (a) we see that $m_A(x)$ has degree n, so is equal to $c_A(x)$.

(ii) If $a_i = 0$, then $A - \lambda I$ is block-diagonal with at least two blocks, so by Q1(b), $m_A(x)$ is the lcm of some powers of $(x - \lambda)$ of degree less than n. Hence $m_A(x) = (x - \lambda)^k$ with k < n.

4. (a) if $T^k = 0$ then the min poly of T divides x^k , so it is x^l for some l. Also $l \ge 2$ as $T \ne 0$. Hence $m_T(x)$ is not a product of distinct linear factors, so T is not diagonalisable by 10.2 of lec notes.

(b) Suppose $T^k = I_V$. If $p(x) = x^k - 1$ then p(T) = 0, so $m_T(x)$ divides $x^k - 1$. Over \mathbb{C} this factorizes as $\prod_{j=0}^{k-1} (x - \omega^j)$, where $\omega = e^{2\pi i/k}$. Hence $m_T(x)$ is a product of distinct linear factors, so T is diagonalisable by 10.2.

(c) (i) If k is the order of π (as an element of the symmetric group), then $T^k = I$, so T is diagonalisable by (b).

(ii) Let $\omega = e^{2\pi i/n}$, and for $i = 0, \dots n-1$ let

$$v_i = \sum_{j=0}^{n-1} \omega^{ij} v_j.$$

Then v_0, \ldots, v_{n-1} is a basis of evectors.

5. (a) The char poly of T is $(x-2)^2(x-3)^3$, so Primary Decomp is $V = V_1 \oplus V_2$, where $V_1 = \ker(T-2I)^2$, $V_2 = \ker(T-3I)^2$. Compute that $V_1 = \operatorname{Sp}(e_2 - e_3 - e_4, e_1 - 7e_3 - e_4)$, $V_2 = \operatorname{Sp}(e_2, e_4)$. (b) Take $B = \{e_2, e_4, e_2 - e_3 - e_4, e_1 - 7e_3 - e_4\}$.

6. (a) As g_1, g_2 are coprime, there exist $r, s \in F[x]$ such that $rg_1 + sg_2 = 1$. Hence for $v \in V$ we have $v = r(T)g_1(T)(v) + s(T)g_2(T)(v).$

The first vector $r(T)g_1(T)(v) \in \ker g_2(T) = V_2$, so $P_2(v) = r(T)g_1(T)(v)$ and similarly $P_1(v) = V_2(v)$

 $s(T)g_2(T)(v)$. Hence $P_2 = r(T)g_1(T)$ and $P_1 = s(T)g_2(T)$. (b) In Q5(a), $g_1 = (x-2)^2$ and $g_2 = (x-3)^2$. Use Euclidean Alg to compute that r = -(2x-7), s = 2x - 3.

7. (a) Note that $(BA)^{k+1} = B(AB)^k A$. Hence if q(x) = xp(x) then q(BA) = Bp(AB)A. So if p(AB) = 0 then q(BA) = 0.

(b) We deduce that $m_{BA}(x)$ divides $xm_{AB}(x)$. Also by symmetry, $m_{AB}(x)$ divides $xm_{BA}(x)$

(c) If A and B are invertible, so is AB, so 0 is not a root of its min poly. Hence by (b), $m_{BA} = m_{AB}$.

(d) Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then AB = 0 has min poly x, whereas BA = A has min poly x^2 .