Linear Algebra MATH 50003
Solutions to Problem Sheet 5

1. (i) J1(0) ® Ji(—1 —i)? @ Ji(3)?, Ji(0) ® Ji(—1 —i)* ® J2(3) & J1(3), J1(0) @
Ji(=1=1)? @ J3(3), J1(0)® J2(~1 = 1) J1(3)%, J1(0) © Jo(—1—1) & J2(3) & J1(3),
Jl(O) D JQ(—l — ’L) D J3(3). Phew!

(ii) If p # 3 then in F,, we have 1 # —2 so the JCFs have two evalues. There
are 3 possible JCFs with char poly (z — 1)? (J3(0), J2(0) @ J1(0) etc) and 7 with
char poly (z + 2)° (J5(—2), Ja(—2) ® J1(—2) etc). So there are 3 x 7 = 21 JCFs
with char poly (z — 1)3(z + 2)°.

If p= 3 then 1 = —2 in F, and the char poly is (z — 1)®. The number of
JCFs is the number of partitions of 8 (ie. the number of expressions of the form
8 =ny + - -+ 4+ ny where n; are positive integers), which is 22.

(iii) JCF must have Jordan blocks J3(0) and J2(1), plus others of dimension
adding to 2 with evalues 0,1: there are 5 such: J5(0), J1(0)2, Jo(1), J1(1)2, J1(0) @
J1(1).

2. Matrix 1: over C or F,,, p # 2, this has 3 distinct evalues so is diagonalisable,
so JCF is J1(1) @ J1(0) @ J1(—1). Over Fy, JCF is Jo(1) @ J1(0).

Matrix 2: char pol is 2%, and g(0) = 1 (for any F): so JCF is J3(0).

Matrix 3: char pol is (z+1)(z—2)2. Over C or Fp,p # 3, JCF is J1(—1)®J2(2);
over F3, JCF is Jo(2) @ J1(2).

Matrix 4: char pol 2°, min pol 2, g(0) = 2, so JCF J4(0) @ J1(0).

Matrix 5: over C or Fp,p # 2, JCF is J3(1) & Ji(1) @ Jo(—1) & Ji(—1); over
Fy, JCF is Jg(l) ) Jg(l) (S5 J1<1).

3. JCFs are respectively
Ja(2), J3(2) @ J1(2), J3(2) ® J1(2), J2(2) @ J1(2) © J1(2), J5(2) ® J1(2).

So numbers 2,3 and 5 are similar.

4. Evalue is 1; rank (A—1) = n— 3 implies g(1) = 3, so there are 3 Jordan blocks;
and rank (A — I)" % = 1 implies there is 1 block of size n — 3 and no larger ones.
Hence JCF is J,,—3(1) & Ja(1) & J1(1).

5. (a) Clearly T = I. Hence T is diagonalisable by Q4 of Sheet 4. The evalues
are n'" roots of unity in C, and each n root w occurs, since vq +wvy +wv3+- - -+

w" u, is an evector of T with evalue w. Hence JCF is J1 (1) J1 (w)®- - -®J1 (W™ 1).
(b) The evalues w’ all lie in R iff n < 2. So these are the only values for which
T has a JCF over R.
(c) Let F =T,. The min poly mr(x) divides 2” — 1. Over F), this factorizes as
(x — 1)P, so the only evalue of T is 1. From the matrix of 7" wrt the given basis,
we see that rank(7 —I) =n —1, so g(1) = 1 and the JCF has 1 Jordan block. So
JCF of T is Jp(1).

6. (a) Let E be the standard basis in order e1, ..., e, and F' the standard basis in
reverse order e, ...,e1. As Je, = dep+en_1, Jep_1 = Aen_1+e,_o, ete, the linear



transformation S(v) = Juv satisfies [S]g = J, [S]r = JT. So if P is the change of
basis matrix from E to F, P~'JP = JT. Therefore J and J” are similar.

Relevant for part (c): Note also that P is the matrix with 1’s on the “reverse
diagonal”, and is symmetric.

(b) Let A be an n x n matrix over C. By the JCF theorem A is similar to a
JCF matrix J = J,,, (M) & -+ & Jp, (Ag). By part (a), for each i, 3P; such that
Pi_lJni(/\i)Pi = Jp,(A\i)". If we let P be the block-diagonal matrix P, & --- @ P,
then P! :Pfl@--.@Pk*l and so

PP =Py AP & P M) P = Ty M) T @& T, )T = I
As A ~ J, 3Q such that Q' AQ = J. Then
PlQtAQPp =P lup =JT = QTAT(Q1H)T.
Noting that (Q~1)7 = (QT)~!, this gives
@) PIQTTAQPQT = AT,
and hence A ~ AT,

(c) As noted in (a), the matrix P above is symmetric. Hence (QPQT)T =
QPTQT = QPQT, and so QPQ" is symmetric.

7. (a) Consider J,,(A) = J + Al where J = J,,(0). Then J,,(\)? = J% +2\J + \21.
This has A? on the diagonal, 2\ on the next diagonal up, and 1 on the next
diagonal. As X\ # 0, we see that J,(A\)2 — A2 has rank n — 1, which means the
geom mult of the evalue A2 is 1. Therefore the JCF of J,,(A)? is J,,(A\?).

(b) This is a really nice application of the JCF theorem.

First we show that any Jordan block J,(A) with A # 0 has a square root. To
see this, let u be a square root of A in C. By (i), 3P s.t. J,(\) = P~1J,(n)?P,
and the RHS is equal to (P~1.J,, (1) P)?.

By the JCF thm, A is similar to a JCF matrix J = J; ® --- ® Ji, where
Ji = Jn;(Ni). As A is invertible, each A\; # 0, so each J; has a square root, say
J; = Kf Then J = K?, where K = K; @ --- @ K}. So J has a square root, and
so does A, using the argument in the previous para.



