Linear Algebra MATH 50003 Solutions to Problem Sheet 5

1. (i) $J_1(0) \oplus J_1(-1-i)^2 \oplus J_1(3)^3$, $J_1(0) \oplus J_1(-1-i)^2 \oplus J_2(3) \oplus J_1(3)$, $J_1(0) \oplus J_1(-1-i)^2 \oplus J_3(3)$, $J_1(0) \oplus J_2(-1-i) \oplus J_1(3)^3$, $J_1(0) \oplus J_2(-1-i) \oplus J_2(3) \oplus J_1(3)$, $J_1(0) \oplus J_2(-1-i) \oplus J_3(3)$. Phew!

(ii) If $p \neq 3$ then in \mathbb{F}_p we have $1 \neq -2$ so the JCFs have two evalues. There are 3 possible JCFs with char poly $(x-1)^3$ $(J_3(0), J_2(0) \oplus J_1(0)$ etc) and 7 with char poly $(x+2)^5$ $(J_5(-2), J_4(-2) \oplus J_1(-2)$ etc). So there are $3 \times 7 = 21$ JCFs with char poly $(x-1)^3(x+2)^5$.

If p = 3 then 1 = -2 in \mathbb{F}_p and the char poly is $(x - 1)^8$. The number of JCFs is the number of partitions of 8 (ie. the number of expressions of the form $8 = n_1 + \cdots + n_k$ where n_i are positive integers), which is 22.

(iii) JCF must have Jordan blocks $J_3(0)$ and $J_2(1)$, plus others of dimension adding to 2 with evalues 0,1: there are 5 such: $J_2(0)$, $J_1(0)^2$, $J_2(1)$, $J_1(1)^2$, $J_1(0) \oplus$ $J_1(1)$.

2. Matrix 1: over \mathbb{C} or \mathbb{F}_p , $p \neq 2$, this has 3 distinct evalues so is diagonalisable, so JCF is $J_1(1) \oplus J_1(0) \oplus J_1(-1)$. Over \mathbb{F}_2 , JCF is $J_2(1) \oplus J_1(0)$.

Matrix 2: char pol is x^3 , and g(0) = 1 (for any F): so JCF is $J_3(0)$.

Matrix 3: char pol is $(x+1)(x-2)^2$. Over \mathbb{C} or \mathbb{F}_p , $p \neq 3$, JCF is $J_1(-1) \oplus J_2(2)$; over \mathbb{F}_3 , JCF is $J_2(2) \oplus J_1(2)$.

Matrix 4: char pol x^5 , min pol x^4 , g(0) = 2, so JCF $J_4(0) \oplus J_1(0)$.

Matrix 5: over \mathbb{C} or \mathbb{F}_p , $p \neq 2$, JCF is $J_3(1) \oplus J_1(1) \oplus J_2(-1) \oplus J_1(-1)$; over \mathbb{F}_2 , JCF is $J_3(1) \oplus J_3(1) \oplus J_1(1)$.

3. JCFs are respectively

$$J_4(2), J_3(2) \oplus J_1(2), J_3(2) \oplus J_1(2), J_2(2) \oplus J_1(2) \oplus J_1(2), J_3(2) \oplus J_1(2).$$

So numbers 2,3 and 5 are similar.

4. Evalue is 1; rank (A-I) = n-3 implies g(1) = 3, so there are 3 Jordan blocks; and rank $(A-I)^{n-4} = 1$ implies there is 1 block of size n-3 and no larger ones. Hence JCF is $J_{n-3}(1) \oplus J_2(1) \oplus J_1(1)$.

5. (a) Clearly $T^n = I$. Hence T is diagonalisable by Q4 of Sheet 4. The evalues are n^{th} roots of unity in \mathbb{C} , and each n^{th} root ω occurs, since $v_1 + \omega v_2 + \omega^2 v_3 + \cdots + \omega^{n-1}v_n$ is an evector of T with evalue ω . Hence JCF is $J_1(1) \oplus J_1(\omega) \oplus \cdots \oplus J_1(\omega^{n-1})$.

(b) The evalues ω^j all lie in \mathbb{R} iff $n \leq 2$. So these are the only values for which T has a JCF over \mathbb{R} .

(c) Let $F = \mathbb{F}_p$. The min poly $m_T(x)$ divides $x^p - 1$. Over \mathbb{F}_p this factorizes as $(x-1)^p$, so the only evalue of T is 1. From the matrix of T wrt the given basis, we see that rank(T-I) = n - 1, so g(1) = 1 and the JCF has 1 Jordan block. So JCF of T is $J_p(1)$.

6. (a) Let *E* be the standard basis in order e_1, \ldots, e_n and *F* the standard basis in reverse order $e_n \ldots, e_1$. As $Je_n = \lambda e_n + e_{n-1}$, $Je_{n-1} = \lambda e_{n-1} + e_{n-2}$, etc, the linear

transformation S(v) = Jv satisfies $[S]_E = J$, $[S]_F = J^T$. So if P is the change of basis matrix from E to F, $P^{-1}JP = J^T$. Therefore J and J^T are similar.

Relevant for part (c): Note also that P is the matrix with 1's on the "reverse diagonal", and is symmetric.

(b) Let A be an $n \times n$ matrix over \mathbb{C} . By the JCF theorem A is similar to a JCF matrix $J = J_{n_1}(\lambda_1) \oplus \cdots \oplus J_{n_k}(\lambda_k)$. By part (a), for each i, $\exists P_i$ such that $P_i^{-1}J_{n_i}(\lambda_i)P_i = J_{n_i}(\lambda_i)^T$. If we let P be the block-diagonal matrix $P_1 \oplus \cdots \oplus P_k$, then $P^{-1} = P_1^{-1} \oplus \cdots \oplus P_k^{-1}$ and so

$$P^{-1}JP = P_1^{-1}J_{n_1}(\lambda_1)P_1 \oplus \cdots \oplus P_k^{-1}J_{n_k}(\lambda_k)P_k = J_{n_1}(\lambda_1)^T \oplus \cdots \oplus J_{n_k}(\lambda_k)^T = J^T.$$

As $A \sim J$, $\exists Q$ such that $Q^{-1}AQ = J$. Then

$$P^{-1}Q^{-1}AQP = P^{-1}JP = J^T = Q^T A^T (Q^{-1})^T.$$

Noting that $(Q^{-1})^T = (Q^T)^{-1}$, this gives

$$(Q^T)^{-1}P^{-1}Q^{-1}AQPQ^T = A^T,$$

and hence $A \sim A^T$.

(c) As noted in (a), the matrix P above is symmetric. Hence $(QPQ^T)^T = QP^TQ^T = QPQ^T$, and so QPQ^T is symmetric.

7. (a) Consider $J_n(\lambda) = J + \lambda I$ where $J = J_n(0)$. Then $J_n(\lambda)^2 = J^2 + 2\lambda J + \lambda^2 I$. This has λ^2 on the diagonal, 2λ on the next diagonal up, and 1 on the next diagonal. As $\lambda \neq 0$, we see that $J_n(\lambda)^2 - \lambda^2 I$ has rank n - 1, which means the geom mult of the evalue λ^2 is 1. Therefore the JCF of $J_n(\lambda)^2$ is $J_n(\lambda^2)$.

(b) This is a really nice application of the JCF theorem.

First we show that any Jordan block $J_n(\lambda)$ with $\lambda \neq 0$ has a square root. To see this, let μ be a square root of λ in \mathbb{C} . By (i), $\exists P$ s.t. $J_n(\lambda) = P^{-1}J_n(\mu)^2 P$, and the RHS is equal to $(P^{-1}J_n(\mu)P)^2$.

By the JCF thm, A is similar to a JCF matrix $J = J_1 \oplus \cdots \oplus J_k$, where $J_i = J_{n_i}(\lambda_i)$. As A is invertible, each $\lambda_i \neq 0$, so each J_i has a square root, say $J_i = K_i^2$. Then $J = K^2$, where $K = K_1 \oplus \cdots \oplus K_k$. So J has a square root, and so does A, using the argument in the previous para.