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Solutions to Problem Sheet 5

1. (i) J1(0) ⊕ J1(−1 − i)2 ⊕ J1(3)3, J1(0) ⊕ J1(−1 − i)2 ⊕ J2(3) ⊕ J1(3), J1(0) ⊕
J1(−1− i)2⊕J3(3), J1(0)⊕J2(−1− i)⊕J1(3)3, J1(0)⊕J2(−1− i)⊕J2(3)⊕J1(3),
J1(0)⊕ J2(−1− i)⊕ J3(3). Phew!

(ii) If p 6= 3 then in Fp we have 1 6= −2 so the JCFs have two evalues. There
are 3 possible JCFs with char poly (x− 1)3 (J3(0), J2(0)⊕ J1(0) etc) and 7 with
char poly (x + 2)5 (J5(−2), J4(−2) ⊕ J1(−2) etc). So there are 3 × 7 = 21 JCFs
with char poly (x− 1)3(x+ 2)5.

If p = 3 then 1 = −2 in Fp and the char poly is (x − 1)8. The number of
JCFs is the number of partitions of 8 (ie. the number of expressions of the form
8 = n1 + · · ·+ nk where ni are positive integers), which is 22.

(iii) JCF must have Jordan blocks J3(0) and J2(1), plus others of dimension
adding to 2 with evalues 0,1: there are 5 such: J2(0), J1(0)2, J2(1), J1(1)2, J1(0)⊕
J1(1).

2. Matrix 1: over C or Fp, p 6= 2, this has 3 distinct evalues so is diagonalisable,
so JCF is J1(1)⊕ J1(0)⊕ J1(−1). Over F2, JCF is J2(1)⊕ J1(0).

Matrix 2: char pol is x3, and g(0) = 1 (for any F ): so JCF is J3(0).

Matrix 3: char pol is (x+1)(x−2)2. Over C or Fp, p 6= 3, JCF is J1(−1)⊕J2(2);
over F3, JCF is J2(2)⊕ J1(2).

Matrix 4: char pol x5, min pol x4, g(0) = 2, so JCF J4(0)⊕ J1(0).

Matrix 5: over C or Fp, p 6= 2, JCF is J3(1) ⊕ J1(1) ⊕ J2(−1) ⊕ J1(−1); over
F2, JCF is J3(1)⊕ J3(1)⊕ J1(1).

3. JCFs are respectively

J4(2), J3(2)⊕ J1(2), J3(2)⊕ J1(2), J2(2)⊕ J1(2)⊕ J1(2), J3(2)⊕ J1(2).

So numbers 2,3 and 5 are similar.

4. Evalue is 1; rank (A−I) = n−3 implies g(1) = 3, so there are 3 Jordan blocks;
and rank (A− I)n−4 = 1 implies there is 1 block of size n− 3 and no larger ones.
Hence JCF is Jn−3(1)⊕ J2(1)⊕ J1(1).

5. (a) Clearly Tn = I. Hence T is diagonalisable by Q4 of Sheet 4. The evalues
are nth roots of unity in C, and each nth root ω occurs, since v1+ωv2+ω2v3+ · · ·+
ωn−1vn is an evector of T with evalue ω. Hence JCF is J1(1)⊕J1(ω)⊕· · ·⊕J1(ωn−1).

(b) The evalues ωj all lie in R iff n ≤ 2. So these are the only values for which
T has a JCF over R.

(c) Let F = Fp. The min poly mT (x) divides xp− 1. Over Fp this factorizes as
(x − 1)p, so the only evalue of T is 1. From the matrix of T wrt the given basis,
we see that rank(T − I) = n− 1, so g(1) = 1 and the JCF has 1 Jordan block. So
JCF of T is Jp(1).

6. (a) Let E be the standard basis in order e1, . . . , en and F the standard basis in
reverse order en . . . , e1. As Jen = λen+en−1, Jen−1 = λen−1+en−2, etc, the linear



transformation S(v) = Jv satisfies [S]E = J , [S]F = JT . So if P is the change of
basis matrix from E to F , P−1JP = JT . Therefore J and JT are similar.

Relevant for part (c): Note also that P is the matrix with 1’s on the “reverse
diagonal”, and is symmetric.

(b) Let A be an n × n matrix over C. By the JCF theorem A is similar to a
JCF matrix J = Jn1(λ1) ⊕ · · · ⊕ Jnk

(λk). By part (a), for each i, ∃Pi such that
P−1
i Jni(λi)Pi = Jni(λi)

T . If we let P be the block-diagonal matrix P1 ⊕ · · · ⊕ Pk,
then P−1 = P−1

1 ⊕ · · · ⊕ P−1
k and so

P−1JP = P−1
1 Jn1(λ1)P1⊕· · ·⊕P−1

k Jnk
(λk)Pk = Jn1(λ1)

T ⊕· · ·⊕Jnk
(λk)T = JT .

As A ∼ J , ∃Q such that Q−1AQ = J . Then

P−1Q−1AQP = P−1JP = JT = QTAT (Q−1)T .

Noting that (Q−1)T = (QT )−1, this gives

(QT )−1P−1Q−1AQPQT = AT ,

and hence A ∼ AT .

(c) As noted in (a), the matrix P above is symmetric. Hence (QPQT )T =
QP TQT = QPQT , and so QPQT is symmetric.

7. (a) Consider Jn(λ) = J +λI where J = Jn(0). Then Jn(λ)2 = J2 + 2λJ +λ2I.
This has λ2 on the diagonal, 2λ on the next diagonal up, and 1 on the next
diagonal. As λ 6= 0, we see that Jn(λ)2 − λ2I has rank n − 1, which means the
geom mult of the evalue λ2 is 1. Therefore the JCF of Jn(λ)2 is Jn(λ2).

(b) This is a really nice application of the JCF theorem.

First we show that any Jordan block Jn(λ) with λ 6= 0 has a square root. To
see this, let µ be a square root of λ in C. By (i), ∃P s.t. Jn(λ) = P−1Jn(µ)2P ,
and the RHS is equal to (P−1Jn(µ)P )2.

By the JCF thm, A is similar to a JCF matrix J = J1 ⊕ · · · ⊕ Jk, where
Ji = Jni(λi). As A is invertible, each λi 6= 0, so each Ji has a square root, say
Ji = K2

i . Then J = K2, where K = K1 ⊕ · · · ⊕Kk. So J has a square root, and
so does A, using the argument in the previous para.


