
Linear Algebra MATH 50003

Solutions to Problem Sheet 6

1. T sends 1→ 0, x→ 1, x2 → 2x, x3 → 3x2, x4 → 4x3.

For F = C or Fp with p 6= 2, 3, JCF is J5(0), Jordan basis is 1, x, 12x
2, 16x

3, 1
24x

4.

For F = F3, JCF is J3(0)⊕ J2(0), Jordan basis is 1, x, 2x2, x3, x4.

For F = F2, JCF is J2(0)2 ⊕ J1(0), Jordan basis is 1, x, x2, x3, x4.

2. (i) Char poly is x− 2)3, min poly is (x− 2)2, so JCF is J2(2)⊕ J1(2). To find
Jordan basis: basis of Im(A− 2I) is u1 = e1 + e2 − e3. To get Jordan basis of V ,
add a vector v1 such that (A − 2I)v1 = u1, and a vector w1 such that u1, w1 is a
basis of ker(A− 2i). Take v1 = e1, w1 = e2. So Jordan basis is

e1 + e2 − e3, e1, e2.

So matrix P =

 1 1 0
1 0 1
−1 0 0

.

(ii) Char poly x(x− 1)3, JCF is J3(1)⊕ J1(0).

To find Jordan basis: primary decomp is V = V0 ⊕ V1 where V0 = ker(A) =
Sp(e1 − e2), V1 = ker(A− I)3 = Sp(e1 + e3, e2, e4).

Find Jordan basis of V1: basis of (A − I)2V1 is e2. Extend to Jordan basis of
(A− I)V1: e2,−e4. Extend to Jordan basis of V1: e2,−e4,−e1 − e3 − e4.

So Jordan basis of V is e2,−e4,−e1−e3−e4, e1−e2. Matrix P is


0 0 −1 1
1 0 0 −1
0 0 −1 0
0 −1 −1 0

.

(iii) Char poly is (x−1)5, JCF is J3(1)⊕J2(1), matrix P =


1

1
1

1
−1 −1 −1 −1 1

.

3. (a) These are simple induction proofs; or you can just do part (ii) and sub in
r = 2 or 3.

(b) Write Jr(λ) = λI +J where J = Jr(0). We know the powers of J , by Prop
11.1. Since I and J commute, the Binomial theorem gives

Jr(λ)n = (λI + J)n = λnI + nλn−1J +

(
n

2

)
λn−2J2 + · · ·

Hence

Jr(λ)n =


λn nλn−1

(
n
2

)
λn−2 . . .

(
n
r−1

)
λn−r+1

λn nλn−1 . . .
(
n
r−2

)
λn−r+2

λn . . .
(
n
r−3

)
λn−r+3

. . .

λn





where of course a binomial coefficiant
(
α
b

)
with b > a is interpreted as 0.

(c) From Q2(i,ii) we have a matrix P such that P−1AP = J , where J is a JCF.
We know the formula for Jn by part (b). Hence we can work out An = PJnP−1.
I will leave you to compute this.

4. (i) A basis of Z is e1, T (e1), T
2(e1) = e1, e1 + e3 + e4, e1 − e2 + 2e3 + 2e4.

(ii) T 3(e1) = −3T (e1) + 3T 2(e1), so from 12.1 of lecture notes, the char and
min polys of TZ are x3 − 3x2 + 3x. A basis of V/Z is the coset Z + e4, and
T̄ (Z + e4) = Z + e4, so the char and min poly of T̄ is x− 1.

(iii) Z(e2, T ) is equal to Z.

(iv) Yes, for example Z(e3, T ) = V .

5. (i) For 1 ≤ r ≤ n let Vr = Sp(e1, . . . , er). Then Vr = Z(er, J) is J-invariant.

We claim that every J-invariant subspace is equal to Vr for some r. Let W be
a J-invariant subspace, and suppose W 6= 0. Choose r maximal such that there
exists w ∈ W with w =

∑r
1 αiei and αr 6= 0. Then (J − λI)r−1w = αre1, and

hence e1 ∈ W . Next, (J − λI)r−2w = αr−1e1 + αre2, and so e2 ∈ W . Continuing
like this, we see that ei ∈W for i = 1, . . . , r, and hence W = Vr.

(ii) If J = Jn1(λ)⊕ · · ·⊕Jnk
(λ), then the λ-eigernspace Eλ of J has dimension

k. As F is infinite and k ≥ 2, there are infinitely many subspaces of Eλ, and each
of these is J-invariant.

The vector space V itself is J-invariant, and is not cyclic: this is because if V
were cyclic, then by 12.1 of the notes, the minimal and characteristic polys of J
would be the same, but this is not the case as mJ(x) = (x− λ)max(ni).


