Linear Algebra MATH 50003 Solutions to Problem Sheet 7

- **1.** (a) (i) Only RCF is $C(x^2+1)^2 \oplus I_2$.
 - (ii) The polys $x^2 + x + 1$ and $x^3 + 2$ are irreducible over \mathbb{Q} . Only RCF is

$$C(x^{2} + x + 1)^{2} \oplus C(x^{2} + x + 1) \oplus C(x^{3} + 2)^{2} \oplus C(x^{3} + 2)$$

(iii) Factorization of x^5+1 into irreducibles in $\mathbb{F}_2[x]$ is $(x+1)(x^4+x^3+x^2+x+1)$. So only RCF is $C(x^4+x^3+x^2+x+1) \oplus I_4$.

(b) (i) Factorization of $x^4 + 1$ into irreducibles in $\mathbb{F}_3[x]$ is $(x^2 + x - 1)(x^2 - x - 1)$. There is no 5×5 matrix with this min poly.

(ii) Factorization of $x^4 + x^2 + 1$ into irreducibles in $\mathbb{F}_3[x]$ is $(x+1)^2(x-1)^2$. So for example $J_2(-1) \oplus J_2(1) \oplus J_1(1)$ has this min poly.

2. (i) A satisfies the poly $x^2 + 1$, and since this is irreducible over \mathbb{R} , it is the minimal poly of A. Therefore the RCF of A is a block-diagonal sum of k copies of $C(x^2+1) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. In particular n = 2k is even.

(ii) By (i), A is similar over \mathbb{R} to $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (k copies). This is similar to $\begin{pmatrix} 0 & -I_k \\ I_k & 0 \end{pmatrix}$.

3. The first matrix, call it A, has characteristic poly $x^4 - 4x^2 + 4 = (x^2 - 2)^2$. Check $A^2 - 2I \neq 0$, so $m_A(x) = (x^2 - 2)^2$ also. So the RCF of A is $C(x^4 - 4x^2 + 4)$.

Call the second matrix B. Check that $c_B(x) = (x^2+1)^4$, $m_B(x) = (x^2+1)^2$. So, writing $f = x^2 + 1$, the RCF of B is either $C(f^2) \oplus C(f^2)$ or $C(f^2) \oplus C(f) \oplus C(f)$. Now check that $f(B) = B^2 + I$ has rank 4. Hence the RCF is $C(f^2) \oplus C(f^2)$.

4. All these matrices have char poly $x^2(x+1)^2(x^2+x+1)$. Call them A_1, \ldots, A_4 , respectively.

Check that $\operatorname{rank}(A_1) = 5$, $\operatorname{rank}(A_1 + I) = 4$, so the geometric mults of 0 and 1 for A_1 are 1 and 2. Therefore the RCF of A_1 is $C(x^2) \oplus I_2 \oplus C(x^2 + x + 1)$.

Next, rank $(A_2) = 4$, rank $(A_2+I) = 4$, so the RCF of A_2 is $0_2 \oplus I_2 \oplus C(x^2+x+1)$. Next, rank $(A_3) = 4$, rank $(A_3 + I) = 5$, so the RCF of A_3 is $0_2 \oplus C(x+1)^2 \oplus C(x^2+x+1)$.

Finally, rank $(A_4) = 4$, rank $(A_3 + I) = 4$, so the RCF of A_4 is $0_2 \oplus I_2 \oplus C(x^2 + x + 1)$.

We conclude using the RCF Theorem that the only similar pair are A_2, A_4 .

4. This is tricky. (At least I can't think of an easy, quick proof.)

Let V be a vector space over F, and $T: V \to V$ a linear map such that there is a basis B with $[T]_B = C(f) \oplus C(g)$. Let $r = \deg(f), s = \deg(g)$, so n = r + s. Then there are vectors v, w such that

$$B = \{v, T(v), \dots, T^{r-1}(v), w, T(w), \dots, T^{s-1}(w)\}.$$

Then $V = V_1 \oplus V_2$, where $V_1 = \operatorname{Sp}(v, T(v), \ldots, T^{r-1}(v)), V_2 = \operatorname{Sp}(w, T(w), \ldots, T^{s-1}(w))$, and moreover the *T*-annihilators of *v* and *w* are the polys f(x) and g(x), respectively.

Now consider the vector u = v + w. For a polynomial p(x), we have $p(T)(u) = p(T)(v) + p(T)(w) \in V_1 \oplus V_2$. If p(T)(u) = 0 then p(T)(v) = p(T)(w) = 0, and hence p(x) is divisible by both annihilators f(x) and g(x). As these are coprime, it follows that f(x)g(x) divides p(x). Hence the *T*-annihilator of *u* is f(x)g(x), which has degree r+s = n. It follows that $u, T(u), \ldots, T^{n-1}(u)$ is a basis of *V*, and the matrix of *T* with respect to this basis is C(fg). Hence $C(f) \oplus C(g) \sim C(fg)$, as required.

5. By the RCF Theorem 12.6, if $m_A(x) = \prod_{i=1}^t f_i(x)^{k_i}$, where f_1, \ldots, f_t are distinct irreducible polys, then

$$A \sim \bigoplus_{j=1}^{r_1} C(f_1^{k_{1j}}) \oplus \dots \oplus \bigoplus_{j=1}^{r_t} C(f_t^{k_{tj}}), \tag{1}$$

for unique integers $k_i = k_{i1} \ge \cdots \ge k_{ir_i}$ for $1 \le i \le t$.

By Q4, there is a unique choice of monic polys $g_1, g_2, \ldots, g_r \in F[x]$ such that $A \sim \bigoplus_{j=1}^r C(g_j)$ and $g_{i+1}|g_i$ for all *i*: namely, take g_1 to be the product of all the largest powers of f_1, \ldots, f_t occurring in (1) (i.e. $g_1 = f_1^{k_{11}} \cdots f_t^{k_{t1}}$ (note this is equal to $m_A(x)$); then take g_2 to be the product of the remaining largest powers of f_1, \ldots, f_t ; and so on, until all the factors in (1) are used up.

In Q1(a)(i), we have
$$g_1 = (x^2 + 1)^2(x - 1), g_2 = x - 1$$
.
In Q1(a)(ii), $g_1 = (x^2 + x + 1)^2(x^3 + 2)^2, g_2 = (x^2 + x + 1)(x^3 + 2)$.
In 1(a)(iii), $g_1 = x^5 + 1, g_2 = g_3 = g_4 = x + 1$.

6. A routine if tedious check shows that the number of irreducible monic polys over \mathbb{F}_3 of degrees 1,2,3 are 2,3,8 respectively.

The number of RCFs with char poly $(x + 1)^3$ or $(x - 1)^3$ is 3 of each, for a total of 6.

The number of RCFs with char poly $(x+1)(x-1)^2$ or $(x+1)^2(x-1)$ is 2 of each, total of 4.

Each char poly (x + 1)q(x) or (x - 1)q(x) (q a quadratic irred) has one RCF: total of 6.

Each char poly c(x), and irred cubic, has one RCF: total 8.

So the total number of conjugacy classes in $GL(3, \mathbb{F}_3)$ is 6 + 4 + 6 + 8 = 24.

Similar reasoning for $GL(4, \mathbb{F}_2)$ gives a total of 14 conjugacy classes.