Linear Algebra MATH 50003 Problem Sheet 7

1. (a) Let $M_n(F)$ be the set of all $n \times n$ matrices over a field F. Find all possible Rational Canonical Forms for

- (i) matrices in $M_6(\mathbb{R})$ with minimal polynomial $(x^2+1)^2(x-1)$
- (ii) matrices in $M_{15}(\mathbb{Q})$ with minimal polynomial $(x^2 + x + 1)^2 (x^3 + 2)^2$
- (iii) matrices in $M_8(\mathbb{F}_2)$ with minimal polynomial $x^5 + 1$.
- (b) True or false:
 - (i) there exists $A \in M_5(\mathbb{F}_3)$ with minimal polynomial $x^4 + 1$
 - (ii) there exists $A \in M_5(\mathbb{F}_3)$ with minimal polynomial $x^4 + x^2 + 1$.
- 2. Let A be a real n × n matrix such that A² + I_n = 0.
 (i) Prove that n is even.

(ii) Prove that A is similar over \mathbb{R} to the matrix $\begin{pmatrix} 0 & -I_{n/2} \\ I_{n/2} & 0 \end{pmatrix}$.

3. (a) Find the Rational Canonical Forms of the following matrices over \mathbb{Q} :

					10	0	0	-1	0	0	0	-0 \	
					1	0	0	0	0	0	0	0	
/0	1	0	0 \		0	1	0	-2	0	0	0	0	
0 0	0	0	-4		0	0	1	0	0	0	0	0	
1 (0	0	4	,	0	0	0	0	0	1	0	0	•
10°	0	1	0 /		0	0	0	0	-1	0	1	0	
					0	0	0	0	0	0	0	1	
					$\setminus 0$	0	0	0	0	0	-1	0/	

(b) Which pairs among the following matrices over \mathbb{F}_2 are similar to each other:

/ 0	1	1	1	1	1		10	0	0	0	0	0		10	0	0	0	0	0		/0	0	0	0	0	0 \
0	0	0	0	0	0		0	0	1	1	1	1		0	0	0	0	0	0		0	0	0	0	0	0
0	0	1	0	0	0		0	0	1	0	0	0		0	0	1	1	1	1		0	0	1	0	0	0
0	0	0	1	0	0	,	0	0	0	1	0	0	,	0	0	0	1	0	0	,	0	0	0	1	1	1
0	0	0	0	0	1		0	0	0	0	0	1		0	0	0	0	0	1		0	0	0	0	0	1
$\setminus 0$	0	0	0	1	1/		$\setminus 0$	0	0	0	1	$_{1}$		$\setminus 0$	0	0	0	1	$_{1}$		$\setminus 0$	0	0	0	1	1/

4. Let F be a field, and let $f, g \in F[x]$ be coprime polynomials (i.e. gcd(f,g) = 1). Prove that the companion matrix C(fg) is similar over F to the block-diagonal matrix $C(f) \oplus C(g)$.

5. Using the RCF Theorem 12.6 of lectures, together with Q4, deduce another version of the RCF Theorem: if A is $n \times n$ over F, then there are unique monic polynomials $g_1, \ldots, g_r \in F[x]$ such that

- (i) A is similar to $C(g_1) \oplus \cdots \oplus C(g_r)$, and
- (ii) g_{i+1} divides g_i for all $i = 1, \ldots, r-1$.

Express all the RCFs you found in Q1(a) in this form.

6. Calculate the number of conjugacy classes in the general linear groups $GL(3, \mathbb{F}_3)$ and $GL(4, \mathbb{F}_2)$.