Linear Algebra MATH 50003 Solutions to Problem Sheet 8

1. (a) Clearly f_v is linear, so $f_v \in V^*$. The map $v \to f_v$ is a linear map $\pi : V \to V^*$, and $v \in \ker(\pi)$ implies $v^T w = 0 \ \forall w \in V$, which implies v = 0. Hence π is injective, and since we know that dim $V = \dim V^*$, π is also surjective, proving (a).

(b)
$$w_1 = (-3, -5, -2)^T$$
, $w_2 = (2, 1, 0)^T$, $w_3 = (1, 2, 1)^T$

2. (a) π_v is clearly linear, so $\pi_v \in V^{**}$. The map $v \to \pi_v$ from $V \to V^{**}$ is linear, and if v is in the kernel then $\pi_v(f) = f(v) = 0$ for all $f \in V^*$, which implies f = 0. Hence the map is injective, and as dim $V = \dim V^* = \dim V^{**}$, it is an isomorphism.

(b) (i)
$$f \in (U+W)^0 \Rightarrow f \in U^0$$
 and $f \in W^0 \Rightarrow f \in U^0 \cap W^0$, so $LHS \subseteq RHS$. Also

$$f \in U^0 \cap W^0 \Rightarrow f(u) = f(w) = 0 \forall u \in U, w \in W \Rightarrow f(u+w) = 0 \forall u, w \Rightarrow f \in (U+W)^0,$$
 so $RHS \subseteq LHS$.

(ii) Strangely, this does not seem to be as easy as (i) and requires a dimension argument. First, $f \in U^0 + W^0 \Rightarrow f = f_1 + f_2$ with $f_1 \in U^0$, $f_2 \in W^0$, so for $v \in U \cap W$, we have $f(v) = f_1(v) + f_2(v) = 0$. Hence $U^0 + W^0 \subseteq (U \cap W)^0$.

For the reverse inclusion, we show the two sides have the same dimension. Let $n = \dim V$ and use Prop. 13.2:

$$\dim(U^{0} + W^{0}) = \dim U^{0} + \dim W^{0} - \dim(U^{0} \cap W^{0})$$

$$= (n - \dim U) + (n - \dim W) - (n - \dim(U + W)) \text{ (using part (i))}$$

$$= n - (\dim U + \dim W - \dim(U + W))$$

$$= n - \dim U \cap W$$

$$= \dim(U \cap W)^{0}.$$

3. Clearry ϕ_1, ϕ_2, ϕ_3 are in V^* , and send the basis vectors $1, x, x^2$ of V as follows:

$$\begin{array}{l} (\phi_1(1),\,\phi_1(x),\,\phi_1(x^2)) = (1,\frac{1}{2},\frac{1}{3}),\\ (\phi_2(1),\,\phi_2(x),\,\phi_2(x^2)) = (0,1,2)\\ (\phi_3(1),\,\phi_3(x),\,\phi_3(x^2)) = (1,0,0). \end{array}$$

The three vectors on the RHS are linearly independent, hence ϕ_1, ϕ_2, ϕ_3 is a basis of V^* . Computing the dual basis to these vectors, we find that the basis of V dual to ϕ_1, ϕ_2, ϕ_3 is f_1, f_2, f_3 , where

$$f_1(x) = 3x - \frac{3}{2}x^2$$
, $f_2(x) = -\frac{1}{2}x + \frac{3}{4}x^2$, $f_3(x) = 1 - 3x + \frac{3}{2}x^2$.

4. (a) Let e_1, \ldots, e_n be the standard basis of F^n , and define $a_{ij} = (e_i, e_j)$, and $A = (a_{ij})$. If $u = \sum u_i e_i, v = \sum v_i e_i \in V$, then using the inner product axioms,

$$(u, v) = \sum_{i,j} u_i \bar{v}_j(e_i, e_j) = \sum_{i,j} u_i a_{ij} \bar{v}_j = u^T A \bar{v}.$$

As seen in lecture notes, A is Hermitian and positive definite.

(b) The definition $(u, v) = u^T A \bar{v}$ satisfies the inner product axioms (1) and (2), and for $v \neq 0$ we have $(v, v) = v^T A \bar{v} > 0$ as A is positive definite, so axiom (3) also holds.

- (c) (i) This does not satisfy the left-linearity axiom (1), eg. for $u = (1,0)^T$, we have (u,u) = 4 but (iu,u) = 0.
- (ii) This is $(u, v) = u^T A \bar{v}$ where $A = \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$. This matrix is Hermitian, but is not positive definite as it has an evalue 0: for $u = (-i, 1)^T$ we have $A\bar{u} = 0$, so $(u, u) = u^T A \bar{u} = 0$, contradicting axiom (3).
- (iii) This is $(u, v) = u^T A \bar{v}$ where $A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. This matrix is Hermitian and is also positive definite, since

$$(u, u) = |u_1|^2 - u_1 \bar{u}_2 - \bar{u}_1 u_2 + 2|u_2|^2 = |u_1 - u_2|^2 + |u_2|^2.$$

- 5. (i) $(u, v) = (u, w) \ \forall u \Rightarrow (u, v w) = 0 \ \forall u \Rightarrow (v w, v w) = 0 \Rightarrow v w = 0.$
 - (ii) $||u+v||^2 = (u+v, u+v) = (u, u) + (u, v) + (v, u) + (v, v) = ||u||^2 + ||v||^2$.
- (iii) $||u+v||^2 = ||u||^2 + ||v||^2 + (u,v) + \overline{(u,v)} \le ||u||^2 + ||v||^2 + 2|(u,v)| \le ||u||^2 + ||v||^2 + 2||u|| ||v||$ (by Cauchy-Schwarz) = $(||u|| + ||v||)^2$.
- (iv) Suppose $\sum_{1}^{r} \lambda_{i} v_{i} = 0$. Then $0 = (\sum_{1}^{r} \lambda_{i} v_{i}, v_{j}) = \lambda_{j}(v_{j}, v_{j})$. Hence (as $v_{j} \neq 0$), $\lambda_{j} = 0$ for all j, and so v_{1}, \ldots, v_{r} are linearly indep.
 - (v) $(u-v, u-v) = ||u||^2 + ||v||^2 (u,v) (v,u) = 1 + 1 1 1 = 0$, hence u-v=0.
- (vi) For $w \in W, x \in W^{\perp}$ we have (w, x) = 0, hence $W \subseteq (W^{\perp})^{\perp}$. Also $\dim(W^{\perp})^{\perp} = \dim V \dim W^{\perp}$ (by Prop 14.4) = $\dim V (\dim V \dim W) = \dim W$. Hence $W = (W^{\perp})^{\perp}$.
- 6. (a) Orthonormal basis u_1, u_2, u_3 where $u_1 = 1, u_2 = \sqrt{3}(1 2x), u_3 = \sqrt{5}(-1 + 6x 6x^2)$.
- (b) ϕ sends $u_1 \to 1$, $u_2 \to \sqrt{3}$, $u_3 \to -\sqrt{5}$. So take $v = u_1 + \sqrt{3}u_2 \sqrt{5}u_3 = 9 36x + 30x^2$.
- 7. (a) (i) Let $u = (a_1, \ldots, a_n)$, $v = (1, \ldots, 1)$. By Cauchy-Schwarz, using the usual dot product on \mathbb{R}^n ,

$$|(u,v)|^2 \le ||u||^2 ||v||^2 \Rightarrow \left(\sum a_i\right)^2 \le \left(\sum a_i^2\right) \, n \Rightarrow \sum a_i^2 \ge \frac{1}{n}.$$

(ii) Let
$$u = \left(\frac{1}{\sqrt{a_1}}, \dots, \frac{1}{\sqrt{a_n}}\right)$$
, $v = \left(\sqrt{a_1}, \dots, \sqrt{a_n}\right)$. Then

$$n^2 = |(u, v)|^2 \le ||u||^2 ||v||^2 = \sum \frac{1}{a_i}.$$

(b) The cubes have total surface area $6(a^2+b^2+c^2)$, and the cuboids 6(ab+bc+ca). If we take u=(a,b,c), v=(b,c,a), Cauchy-Schwarz gives $ab+bc+ca < a^2+b^2+c^2$ (strict inequality as u,v are not scalar multiples of each other).