Linear Algebra MATH 50003
Solutions to Problem Sheet 9

1. (a) (i) Let wo = mw (v), so that v = wy + w' with w’ € WL. Then for any w € W,

v —wol[* < [[v —woll” + [|wo — w]f?
= ||(v — wo) + (wo — w)||* (by Pythagoras, as (v — wg,wp — w) = 0)
= |lv —wl*.

Hence ||v—w|| is minimal for w = wg. Also equality holds in the above iff ||wo —w||> = 0,
ie. iff w = wg, so wy is the unique closest vector to v.

(ii) Extend v1,...,v, to an orthonormal basis vy, ..., v, of V. By 14.6 of lectures,
T n
v = Z(v,vi)vi + Z (v,v5) v
i=1 i=s+1
The first sum is in W and the second is in W+. Hence 7y (v) is equal to the first sum.
(b) (i) Use Gram-Schmidt to get an orthonormal basis {ui,us} of W: uy = %(1, 1,0,0),
Uy = I(O 0,1,2). Now let v = (1,2,3,4) and compute
3 3 11 22
w(v) = (v,u1) w1 + (v, u2) ug = (2, 35 5) :

(11) let V be the vector space of real polys of degree < 3 with inner product (f,g) =
fo z)dz, and let W the subspace {p(x) € V : p(0) = p'(0) = 0}, so that W =
Sp(x2, ac3). We are looking for the closest point in W to the poly ¢(z) = 2 + 3z, ie.

w(q(z)).
Use Gram-Schmidt to find an orthomormal basis of W:

= V5a?, fo = V7(=52% + 62°).
Then compute that

203 5

mw(q(x)) = (¢, fr)ur + (g, f2) fo = 2422 — T()

2. This is all quite routine using the equation (7'(u),v) = (u, T*(v)).

(i) By defn of (S + T)*, (u,(S + T)*(v)) = ((S+ T)(u),v) = (S(u) + T(u),v) =
(S(u). v) + (T(w),v) = (u, 5 (v)) + (u, T*(v)) = (u, S*(v) +T*(v)). Hence (S+T)*(v) =
S*(v) + T*(v) for all v.

(i) (u, AT)*(v)) = (A\T(u),v) = MNT(u),v) = Au,T*(v)) = (u, \T*(v)). Hence
(AT)*(v) = AT*(v) for all v.

iii) (u, (T%)"0) = (T*(u),v) = (v,T*(v)) = (T(v),u) = (u,T(v)). Hence (T*)*(v) =
T (v) for all v.

(
(iv) ((ST)*u,v) = (u, ST(v)) = (5*(u), T(v)) = (T*5*(u),v), hence (ST)* = T*S".
(
(

v) v € ker(T*) < (u, T*(v)) = 0 Vu & (T(u),v) = 0 Vu < v € Im(T)*.
( Vl; By (iii) and (v), Im(T*)* = ker(T**) = ker(T), hence ker(T)*+ = Im(T*)*+ =
Im(7T™



3. if¢1,...,cp are the columns of P, then the ij-entry of PT P is equal to c;fréj, so PT=J
iff ¢1,..., ¢, is an orthonormal set in C"™.

Let A\ be an evalue of P, and v € C™ a unit evector with Pv = \v. Then
M = Mwls = W) (W) = (Pv)T(Po) = vl PTPo =0T5=1.

Hence || = 1.

As the first col is a unit vector, y = £1. Then the second column being unit implies
2 = 0. The first and third cols are orthogonal, which gives y + z + i(y — 1) = 0. Hence
y=1z=—-1,2=0.

For any A € C with |A| = 1, the matrix A, is unitary. There are infinitely many of
these.

On the other hand any diagonal orthogonal matrix must have +1’s on the diagonal,
so there are only 2" of these.

4. 1st matrix: evalues 1,3, unitary P = —= < Lot >

2\ -1 1
—V2i 0 V2i
2nd matrix: evalues 1,2,3, unitary P = % -1 V2 -1
I V2 1
1 —1i -1+
3rd matrix: evalues 2,2, —2, unitary P = % i 1 141

144 —1-+1 0
(In each case, many other P’s are possible.)

5. (a) As T is self-adjoint, (T'(v),v) = (v,T*(v)) = (v, T(v)) = (T'(v),v) for all v € V.
Hence (T(v),v) € R.

(b) We know by the spectral theorem 15.3 that V' has an orthonormal basis B =
{v1,...,v,} of T-eigenvectors, with corresponding evalues A1,...,\, (not necessarily
distinct, of course).

(=) Suppose T is positive. Then for each i, we have
0 < (T(vi), vi) = Ai(vi, vi) = Ail[vil %,

and hence \; > 0.

(<) Suppose A; > 0 for all i. Let 0 # v € V,s0v = 2?21 a;v; for some scalars «;.
Then T'(v) = 37 aj\jvj, s0

(T'(v),v)
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Hence T is positive.
(¢) The 1st and 2nd matrices in Q4 have positive evalues, so are positive maps.

(d) Suppose T is positive. By (b), all the evalues A; > 0. So we can define a linear map
S :V — V by taking
S(Uz) =V )\i v; for all 1.



Then S?(v;) = A\jv; = T(v;) for all i, so S = T. Also the matrix [S]p is a real diagonal
matrix, so is symmetric, and hence S is self-adjoint by 15.2 of lecture notes.

(e) We have P~ AP = diag(\1,...,\n), so a square root of A is PDP~! where D =
diag(v/A1, ...,V An). We worked out the evalues \; and the matrices P in Q4, so can
work out the square roots. I’'ll omit the calcs.

6. (i) [[S(v)[I> = (8(v), S(v)) = (v, v) = [v]]*.

(ii) For u,v € V, (u,v) = (S(u),S(v)) = (u,S*S(v)). Hence S*S(v) = v for all v,
and so S*S = Iy,. This implies S* = S~!, and so also SS* = Iy.

(iii) (S*(u), S*(v)) = (u, S**S*(v)) = (u, SS*(v)) (since S** = S) = (u,v). Hence S*
is an isometry.

(iv) Let P = [S]g. Then by 15.2 we have [S*]p = PT. Hence I = [S*S]p = PTP,
and so P is unitary.

(v) The proof goes by induction on n = dim V. The result is obvious for n = 1.

As F = C, we can find a unit eigenvector v; of S. Let S(vi) = Avi, and let
W = Sp(v1). As S* = S~ we have S*(v1) = Aoy,

We now show that W+ is S-invariant: if w € W+, then

(S(w),v1) = (w,S*(v1)) = (w, \"Lvy) = 0.

Hence S(w) € W+, and we have shows that W+ is S-invariant. Now apply the induction
hypothesis to the restriction Sy, (which is clearly an isometry of W=): this gives us an
orthonormal basis v, ..., v, of W' consistsing of S-evectors. Then vy, vs,...,v, is an
orthonormal basis of V' consistsing of S-evectors. This completes the proof by induction.



