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Solutions to Problem Sheet 9

1. (a) (i) Let w0 = πW (v), so that v = w0 + w′ with w′ ∈W⊥. Then for any w ∈W ,

||v − w0||2 ≤ ||v − w0||2 + ||w0 − w||2
= ||(v − w0) + (w0 − w)||2 (by Pythagoras, as (v − w0, w0 − w) = 0)
= ||v − w||2.

Hence ||v−w|| is minimal for w = w0. Also equality holds in the above iff ||w0−w||2 = 0,
ie. iff w = w0, so w0 is the unique closest vector to v.

(ii) Extend v1, . . . , vr to an orthonormal basis v1, . . . , vn of V . By 14.6 of lectures,

v =
r∑

i=1

(v, vi) vi +
n∑

i=s+1

(v, vi) vi.

The first sum is in W and the second is in W⊥. Hence πW (v) is equal to the first sum.

(b) (i) Use Gram-Schmidt to get an orthonormal basis {u1, u2} of W : u1 = 1√
2
(1, 1, 0, 0),

u2 = 1√
5
(0, 0, 1, 2). Now let v = (1, 2, 3, 4) and compute

πW (v) = (v, u1)u1 + (v, u2)u2 =

(
3

2
,
3

2
,
11

5
,
22

5

)
.

(ii) let V be the vector space of real polys of degree ≤ 3 with inner product (f, g) =∫ 1
0 f(x)g(x)dx, and let W the subspace {p(x) ∈ V : p(0) = p′(0) = 0}, so that W =

Sp(x2, x3). We are looking for the closest point in W to the poly q(x) = 2 + 3x, ie.
πW (q(x)).

Use Gram-Schmidt to find an orthomormal basis of W :

f1 =
√

5x2, f2 =
√

7(−5x2 + 6x3).

Then compute that

πW (q(x)) = (q, f1)u1 + (q, f2)f2 = 24x2 − 203

10
x3.

2. This is all quite routine using the equation (T (u), v) = (u, T ∗(v)).

(i) By defn of (S + T )∗, (u, (S + T )∗(v)) = ((S + T )(u), v) = (S(u) + T (u), v) =
(S(u), v) + (T (u), v) = (u, S∗(v)) + (u, T ∗(v)) = (u, S∗(v) +T ∗(v)). Hence (S+T )∗(v) =
S∗(v) + T ∗(v) for all v.

(ii) (u, (λT )∗(v)) = (λT (u), v) = λ(T (u), v) = λ(u, T ∗(v)) = (u, λ̄T ∗(v)). Hence
(λT )∗(v) = λ̄T ∗(v) for all v.

(iii) (u, (T ∗)∗v) = (T ∗(u), v) = (v, T ∗(u)) = (T (v), u) = (u, T (v)). Hence (T ∗)∗(v) =
T (v) for all v.

(iv) ((ST )∗u, v) = (u, ST (v)) = (S∗(u), T (v)) = (T ∗S∗(u), v), hence (ST )∗ = T ∗S∗.

(v) v ∈ ker(T ∗)⇔ (u, T ∗(v)) = 0 ∀u⇔ (T (u), v) = 0 ∀u⇔ v ∈ Im(T )⊥.

(vi) By (iii) and (v), Im(T ∗)⊥ = ker(T ∗∗) = ker(T ), hence ker(T )⊥ = Im(T ∗)⊥⊥ =
Im(T ∗).



3. if c1, . . . , cn are the columns of P , then the ij-entry of P T P̄ is equal to cTi c̄j , so P T =̄I
iff c1, . . . , cn is an orthonormal set in Cn.

Let λ be an evalue of P , and v ∈ Cn a unit evector with Pv = λv. Then

λλ̄ = λλ̄vT v̄ = (λv)T (λ̄v̄) = (Pv)T (P̄ v̄) = vTP T P̄ v̄ = vT v̄ = 1.

Hence |λ| = 1.

As the first col is a unit vector, y = ±1. Then the second column being unit implies
x = 0. The first and third cols are orthogonal, which gives y + z + i(y − 1) = 0. Hence
y = 1, z = −1, x = 0.

For any λ ∈ C with |λ| = 1, the matrix λIn is unitary. There are infinitely many of
these.

On the other hand any diagonal orthogonal matrix must have ±1’s on the diagonal,
so there are only 2n of these.

4. 1st matrix: evalues 1,3, unitary P = 1√
2

(
i i
−1 1

)
.

2nd matrix: evalues 1,2,3, unitary P = 1
2

−√2i 0
√

2i
−1

√
2 −1

1
√

2 1

.

3rd matrix: evalues 2, 2,−2, unitary P = 1
2

 1 −i −1 + i
i 1 1 + i

1 + i −1 + i 0

.

(In each case, many other P ’s are possible.)

5. (a) As T is self-adjoint, (T (v), v) = (v, T ∗(v)) = (v, T (v)) = (T (v), v) for all v ∈ V .
Hence (T (v), v) ∈ R.

(b) We know by the spectral theorem 15.3 that V has an orthonormal basis B =
{v1, . . . , vn} of T -eigenvectors, with corresponding evalues λ1, . . . , λn (not necessarily
distinct, of course).

(⇒) Suppose T is positive. Then for each i, we have

0 < (T (vi), vi) = λi(vi, vi) = λi||vi||2,

and hence λi > 0.

(⇐) Suppose λi > 0 for all i. Let 0 6= v ∈ V , so v =
∑n

j=1 αjvj for some scalars αj .
Then T (v) =

∑n
j=1 αjλjvj , so

(T (v), v) =
(∑

j αjλjvj ,
∑

k αkvk

)
=
∑

j λjαjᾱj

=
∑

j λj |αj |2
> 0.

Hence T is positive.

(c) The 1st and 2nd matrices in Q4 have positive evalues, so are positive maps.

(d) Suppose T is positive. By (b), all the evalues λi > 0. So we can define a linear map
S : V → V by taking

S(vi) =
√
λi vi for all i.



Then S2(vi) = λivi = T (vi) for all i, so S2 = T . Also the matrix [S]B is a real diagonal
matrix, so is symmetric, and hence S is self-adjoint by 15.2 of lecture notes.

(e) We have P−1AP = diag(λ1, . . . , λn), so a square root of A is PDP−1, where D =
diag(

√
λ1, . . . ,

√
λn). We worked out the evalues λi and the matrices P in Q4, so can

work out the square roots. I’ll omit the calcs.

6. (i) ||S(v)||2 = (S(v), S(v)) = (v, v) = ||v||2.
(ii) For u, v ∈ V , (u, v) = (S(u), S(v)) = (u, S∗S(v)). Hence S∗S(v) = v for all v,

and so S∗S = IV . This implies S∗ = S−1, and so also SS∗ = IV .

(iii) (S∗(u), S∗(v)) = (u, S∗∗S∗(v)) = (u, SS∗(v)) (since S∗∗ = S) = (u, v). Hence S∗

is an isometry.

(iv) Let P = [S]B. Then by 15.2 we have [S∗]B = P̄ T . Hence I = [S∗S]B = P̄ TP ,
and so P is unitary.

(v) The proof goes by induction on n = dimV . The result is obvious for n = 1.

As F = C, we can find a unit eigenvector v1 of S. Let S(v1) = λv1, and let
W = Sp(v1). As S∗ = S−1, we have S∗(v1) = λ−1v1.

We now show that W⊥ is S-invariant: if w ∈W⊥, then

(S(w), v1) = (w, S∗(v1)) = (w, λ−1v1) = 0.

Hence S(w) ∈W⊥, and we have shows that W⊥ is S-invariant. Now apply the induction
hypothesis to the restriction SW⊥ (which is clearly an isometry of W⊥): this gives us an
orthonormal basis v2, . . . , vn of W⊥ consistsing of S-evectors. Then v1, v2, . . . , vn is an
orthonormal basis of V consistsing of S-evectors. This completes the proof by induction.


