1. (a) Let V be a finite-dimensional inner product space, let W be a subspace of V, and let $\pi_W : V \to W$ be the orthogonal projection map along W , as defined in lectures.

(i) For $v \in V$, show that $\pi_W(v)$ is the unique vector in W closest to v (ie. show $||v - w||$ ($w \in W$) is minimal for $w = \pi_W(v)$.

(ii) If v_1, \ldots, v_r is an orthonormal basis of W, prove that $\pi_W(v) = \sum_{i=1}^r (v, v_i) v_i$.

(b) (i) Let $V = \mathbb{R}^4$ with the usual inner product (ie. the dot product), and let $W = Sp((1, 1, 0, 0)^T, (1, 1, 1, 2)^T)$. Find $w \in W$ such that $||w - (1, 2, 3, 4)^T||$ is minimal.

(ii) Find a polynomial $p(x)$ over R of degree at most 3 such that $p(0) = p'(0) = 0$ and $\int_0^1 |2 + 3x$ $p(x)|^2 dx$ is as small as possible.

2. Let V be a finite-dimensional inner product space, and let $S, T : V \to V$ be linear maps, with adjoints S^*, T^* . Prove the following statements:

- (i) $(S+T)^* = S^* + T^*$ (ii) $(\lambda T)^* = \overline{\lambda} T^*$ for any scalar λ
- (iii) $(T^*)^* = T$
- $(iv) (ST)^* = T^*S^*$
- $(v) \ker(T^*) = \operatorname{Im}(T)^{\perp}$
- $(vi) \operatorname{Im}(T^*) = \ker(T)^{\perp}.$

3. Show that an $n \times n$ complex matrix P is unitary (ie. $P^T \overline{P} = I$) iff its columns form an orthonormal basis of \mathbb{C}^n . Show also that $|\lambda|=1$ for any eigenvalue λ of P.

Find real numbers x, y, z such that the matrix $\frac{1}{2}$ $\sqrt{ }$ \mathcal{L} 1 $x-i$ $z+i$ yi y $1+i$ $1+i$ $-1+i$ x \setminus is unitary.

Show that for any n, there are infinitely many diagonal complex unitary $n \times n$ matrices, but only finitely many diagonal real orthogonal $n \times n$ matrices.

4. For each of the following Hermitian matrices A, find a unitary matrix P such that $P^{-1}AP$ is diagonal: $\sqrt{2}$

$$
\begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}, \begin{pmatrix} 2 & \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & 2 & 0 \\ \frac{-i}{\sqrt{2}} & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & i & -1+i \\ -i & 1 & -1-i \\ -1-i & -1+i & 0 \end{pmatrix}.
$$

5. Let V be a finite-dimensional inner product space, and let $T: V \to V$ be a self-adjoint linear map.

(a) Show that $(T(v), v) \in \mathbb{R}$ for all $v \in V$.

(b) Define T to be *positive* if $(T(v), v) > 0$ for all nonzero $v \in V$. Prove that T is positive if and only if every eigenvalue of T is positive. (Recall that the eigenvalues of T are real, by 15.5 of lectures.)

(c) For the three Hermitian matrices A in Q4, the linear maps defined by $T(v) = Av$ for $v \in \mathbb{C}^n$ are self-adjoint. Which of these maps are positive?

(d) Show that if T is positive, then it has a self-adjoint positive *square root*, ie. a self-adjoint positive linear map S such that $S^2 = T$.

(e) Find a square root for each of the positive maps identified in part (c).

6. Let V be a finite-dimensional inner product space over F, where $F = \mathbb{R}$ or \mathbb{C} . We call a linear map $S: V \to V$ an *isometry* if $(S(u), S(v)) = (u, v)$ for all $u, v \in V$. For an isometry S, prove the following statements.

- (i) $||S(v)|| = ||v||$ for all $v \in V$.
- (ii) $S^*S = SS^* = I_V$.
- (iii) The adjoint S^* is also an isometry.
- (iv) If B is an orthonormal basis of V, then the matrix $[S]_B$ is unitary.

(v) Show that if $F = \mathbb{C}$, then there is an orthonormal basis E of V such that the matrix $[S]_E$ is diagonal. (Hint: try to copy the proof of the spectral theorem 15.3.)