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Sheet 3 Solutions

1. Applying the divergence theorem to φA we have

∫

V

∇ ∙ (φA) dV =
∫

S

φA ∙ n̂ dS = 0

(since φ = 0 on the surface S). We also have

div (φA) = ∇φ ∙A+ φ divA,

Hence result. If A is solenoidal throughout V then this means that divA = 0 throughout V and hence∫
V
φ divA dV = 0. It therefore follows that

∫

V

A ∙ ∇φdV = 0,

as required.
In two dimensions the divergence theorem applied to φA is

∫

R

div (φA) dx dy =

∮

C

φA ∙ n̂ ds = 0

since φ = 0 on C. Then using
div (φA) = ∇φ ∙A+ φ divA

again, we can establish the given result.

2. By the divergence theorem

∫

S

r ∙ n̂ dS =
∫

V

∇ ∙ r dV = 3
∫

V

dV = 3V,

where V is the volume enclosed by S.

3. By the divergence theorem ∫

S

r ∙ n̂
r2
dS =

∫

V

∇ ∙
( r
r2

)
dV.

Now

∇ ∙
( r
r2

)
= ∇ ∙

(
xi+ yj+ zk

x2 + y2 + z2

)

=
∂

∂x

(
x

x2 + y2 + z2

)

+
∂

∂y

(
y

x2 + y2 + z2

)

+
∂

∂z

(
z

x2 + y2 + z2

)

=
3

x2 + y2 + z2
−

2x2

(x2 + y2 + z2)2
−

2y2

(x2 + y2 + z2)2
−

2z2

(x2 + y2 + z2)2

=
1

x2 + y2 + z2
=
1

r2
.

Thus ∫

S

r ∙ n̂
r2
dS =

∫

V

dV

r2
,

as required.
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4. (i) Let A = φ(x, y, z) i, and suppose that S is a surface with outward normal n̂ = l i+m j+ nk. If we
apply the divergence theorem we obtain

∫

S

lφ dS =

∫

τ

∂φ

∂x
dτ.

Similarly, by considering A = φ j, and A = φk we obtain
∫

S

mφdS =

∫

τ

∂φ

∂y
dτ,

∫

S

nφdS =

∫

τ

∂φ

∂z
dτ.

By multiplying the first equation by i, the second by j, the third by k and then adding we get
∫

S

n̂φdS =

∫

τ

∇φdτ.

(ii) Expanding out the LHS we have
∫

S

n̂×A dS =

∫

S

i(mA3 − nA2)− j(lA3 − nA1) + k(lA2 −mA1) dS

=

∫

τ

i

(
∂A3

∂y
−
∂A2

∂z

)

− j

(
∂A3

∂x
−
∂A1

∂z

)

+ k

(
∂A2

∂x
−
∂A1

∂y

)

dτ,

where we have made use of the results obtained in (i). The integrand above is equal to curlA, and hence
we have ∫

S

n̂×A dS =
∫

τ

curlA dτ.

5. Firstly if A = xi then ∇ ∙A = 1 and so
∫

V

∇ ∙A dV =
∫ a

−a

∫ a

−a

∫ a

−a
dx dy dz = (2a)3 = 8a3.

Now we turn to the surface integral. We need to evaluate
∫
S
A ∙ n̂ dS. Now, two faces of the cube have

normals in the ±i directions, call these faces Sx+ and Sx−. The other faces of the cube have normals in
the ±j,±k directions and so A ∙ n̂ = 0 on these faces for this choice of A. Therefore

∫

S

A ∙ n̂ dS =
∫

Sx+

(xi) ∙ i dy dz +
∫

Sx−
(xi) ∙ (−i) dy dz.

But on Sx+ we have x = a and hence A = ai, while on Sx− we have x = −a and A = −ai. Therefore
these integrals simplify to ∫ a

−a

∫ a

−a
a dydz +

∫ a

−a

∫ a

−a
a dydz = 8a3,

which agrees with the value computed for the volume integral.

6. There are two parts to the closed surface. The first one is the surface of the cone (S1 say), which is
given by φ = z2 − x2 − y2 = 0. A unit normal to S1 is therefore given by

±
∇φ
|∇φ|

= ±
−2xi− 2yj+ 2zk
√
4x2 + 4y2 + 4z2

= ±
−2xi− 2yj+ 2zk

√
8z2

= ±
−xi− yj+ zk

√
2z

.

For the divergence theorem we need the outward normal to the cone, which is obtained by taking the
minus sign above, so that

n̂ =
xi+ yj− zk
√
2z

.

Thus we have A ∙ n̂ = [x(x+ y) + y(y − x− z)− z(z − y)]/
√
2z = (x2 + y2 − z2)/

√
2z = 0 on the surface

of the cone. So in this case ∫

S1

A ∙ n̂ dS = 0.
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Now we need to consider the surface integral over the flat cap at z = 1. Call this the surface S2. Here the
outward unit normal is simply n̂ = k and so A ∙ n̂ = z − y = 1− y on S2 and so

∫

S2

A ∙ n̂ dS =
∫

x2+y2≤1
(1− y) dx dy =

∫ 2π

0

∫ 1

0

(1− r sin θ) r dr dθ = π,

since S2 is a circle of radius 1. Thus the total contribution from the surface integrals is

∫

S

A ∙ n̂ dS = π.

Now we turn to the volume integral. This is straightforward since divA = ∂(x + y)/∂x + ∂(y − x −
z)/∂y + ∂(z − y)/∂z = 3, and so ∫

V

divA dV = 3V,

where V is the volume of a cone of height 1 and radius 1. Thus V = (1/3)π and the volume integral is
equal to π. The divergence theorem is therefore verified.

7. In this case the closed curve (γ say) that forms the rim of the ellipsoid is the ellipse x2/a2+ y2/b2 = 1
in the plane z = 0. Then by Stokes theorem the given surface integral is equal to

∮
γ
A ∙ dr. Now in this

case

A ∙ dr = ((y − z)i+ (z − x)j+ (x− y)k).(dxi+ dyj)

= (y − z)dx+ (z − x)dy

= ydx− xdy,

since we are in the plane z = 0. On the ellipse x = a cos θ, y = b sin θ, and so

∮

γ

A ∙ dr =
∫ 2π

0

ab(− sin2 θ − cos2 θ) dθ = −2πab,

where we have traversed γ in an anti-clockwise manner. (Using the right-hand screw rule, this means
that the normal to the ellipsoid should point to positive values of z, i.e. n̂ ∙ k > 0, which is consistent
with the direction given in the question).

8. First we compute
curlA = i(−yz + yz)− j(0) + k(0− (−1)) = k.

The unit normal to the hemisphere is ∇(x2 + y2 + z2)/
∣
∣∇(x2 + y2 + z2)

∣
∣ = ±(xi + yj + zk)/a. We are

free to choose either sign for the normal: let’s take the positive root so that the normal points in the
direction of increasing z. We therefore have that

(∇×A) ∙ n̂ = z/a = cos θ,

using the parametrization given in the question. An element of surface is also given as dS = a2 sin θ dθ dφ.
Thus

∫

S

(∇×A) ∙ n̂ dS =

∫ 2π

0

∫ π/2

0

a2 sin θ cos θ dθ dφ

=

∫ 2π

0

a2[(sin2 θ)/2]
π/2
0 dφ = πa

2.

Now we need to work out the other side of Stokes theorem which is the line integral
∮
γ
A ∙ dr. Firstly γ

is in the plane z = 0 and so for this integral we have

A = (3x− y, 0, 0), dr = dxi+ dyj

and so
A ∙ dr = (3x− y)dx.
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Since γ is a circle of radius a we can use plane polar coordinates

x = a cosφ, y = a sinφ

⇒ A ∙ dr = −(3a cosφ− a sinφ) a sinφdφ.

We therefore have that

∮

γ

A ∙ dr =
∫ 2π

0

a2(sin2 φ− 3 cosφ sinφ) dφ

= a2(π − 3[sin2 φ]2π0 ) = πa
2,

and the theorem is verified. Note that we travelled in an anti-clockwise direction around γ as viewed
from above: this is in accordance with the right hand rule and our earlier choice for the direction of n̂.

9. In this case the boundary curve γ is the circle around the top of the cone and has the equation
x2 + y2 = 9 in the plane z = 3. We will calculate the line integral first as this is the easy bit.

I =

∮
A ∙ dr =

∮

γ

(−yi+ xj− xyzk) ∙ (dxi+ dyj)

=

∮

γ

−ydx+ xdy.

Since γ is the circle x2 + y2 = 9 we can parametrize using plane polars and write x = 3 cos θ, y = 3 sin θ
with 0 ≤ θ ≤ 2π. If we traverse γ in an anti-clockwise manner we then have

I =

∫ 2π

0

(−3 sin θ)2 + (3 cos θ)2dθ = 18π.

Now we need to work out the surface integral
∫
S
curlA ∙ n̂ dS, where S is the cone surface. First we

calculate

curlA =

∣
∣
∣
∣
∣
∣

i j k
∂/∂x ∂/∂y ∂/∂z
−y x −xyz

∣
∣
∣
∣
∣
∣
= −xzi+ yzj+ 2k.

Next we need the unit normal to the cone. Here we need to be careful about the direction of the normal.
Recall that in Stokes theorem the direction we traverse the curve and the direction of the normal to the
surface are related by a right-hand screw rule. We decided to traverse γ in an anti-clockwise manner:
using the screw rule this means that the normal should point in the direction of increasing z (which
means in this case that the normal points into the cone). In question 6 we showed that the unit normals
to the cone are given by

±
−xi− yj + zk

√
2z

and so in this case we should choose

n̂ =
−xi− yj+ zk

√
2z

.

It follows that on S we have

curlA ∙ n̂ =
x2z − y2z + 2z

√
2z

=
1
√
2
(x2 − y2 + 2).

We have to integrate this over the surface of the cone. To do this we can use the projection theorem to
project it onto the plane z = 3, .where the projected shape Σ say, is the circle x2 + y2 = 9. This gives

∫

S

(curlA ∙ n̂) dS =

∫

Σ

1
√
2
(x2 − y2 + 2)

dxdy

|n̂ ∙ k|

=

∫

Σ

(x2 − y2 + 2) dx dy.
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Since Σ is the area inside a circle of radius 3 we can parametrize using x = r cos θ, y = r sin θ with
0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π and dxdy = rdrdθ. The integral becomes

∫ 2π

0

∫ 3

0

(r2 cos2 θ − r2 sin2 θ + 2)rdrdθ

=

∫ 2π

0

34

4
cos2 θ −

34

4
sin2 θ + 9 dθ

=
34

4
π −
34

4
π + 18π

= 18π.

The answer therefore agrees with that computed by the line integral, and Stokes theorem is verified.


