Problem Sheet 3

1. A region V is enclosed by a surface S. ϕ and **A** are scalar and vector fields with ϕ vanishing on S. Show, by applying the divergence theorem to ϕ **A**, that

$$\int_{V} \phi \operatorname{div} \mathbf{A} \, dV = -\int_{V} \mathbf{A} \cdot \nabla \phi \, dV.$$

Deduce that if \mathbf{A} is solenoidal throughout V then

$$\int_V \mathbf{A} \cdot \nabla \phi \, dV = 0.$$

Show that in two dimensions the corresponding result is

$$\int_{R} \phi \operatorname{div} \mathbf{A} \, dx \, dy = -\int_{R} \mathbf{A} \cdot \nabla \phi \, dx \, dy,$$

where ϕ vanishes on the closed curve C which bounds the region R.

2. Evaluate

$$\int_{S} \mathbf{r} \cdot \widehat{\mathbf{n}} \, dS$$

where S is any closed surface enclosing a volume V, and **r** is the position vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

3. Show that

$$\int_{S} \frac{\mathbf{r} \cdot \widehat{\mathbf{n}}}{r^2} \, dS = \int_{V} \frac{dV}{r^2},$$

where S is a closed surface enclosing the volume V, and **r** is as above, with $r = |\mathbf{r}|$.

4. Use the divergence theorem to prove the following results, where S is a closed surface with unit outward normal $\hat{\mathbf{n}}$ enclosing the volume τ , $\phi(x, y, z)$ is a scalar and $\mathbf{A}(x, y, z)$ a vector function of position.

(i)
$$\int_{S} \widehat{\mathbf{n}} \phi \, dS = \int_{\tau} \nabla \phi \, d\tau.$$
 (ii) $\int_{S} \widehat{\mathbf{n}} \times \mathbf{A} \, dS = \int_{\tau} \operatorname{curl} \mathbf{A} \, d\tau.$

5. Verify the divergence theorem for the case when

 $\mathbf{A} = x \, \mathbf{i}$

and V is the cube $|x| \leq a$, $|y| \leq a$, $|z| \leq a$.

6. Let S be the piecewise smooth closed surface consisting of the surface of the cone $z = (x^2 + y^2)^{1/2}$ for $x^2 + y^2 \le 1$, together with the flat cap consisting of the disk $x^2 + y^2 \le 1$ in the plane z = 1. Verify the divergence theorem

$$\int_{S} \mathbf{A} \cdot \widehat{\mathbf{n}} \, dS = \int_{V} \operatorname{div} \mathbf{A} \, dV$$

for this surface, when $\mathbf{A} = (x+y)\mathbf{i} + (y-x-z)\mathbf{j} + (z-y)\mathbf{k}$. You may assume $dx dy = r dr d\theta$ in plane polar coordinates.

7. By converting into an appropriate line integral, use Stokes theorem to evaluate

$$\int_{S} (\nabla \times \mathbf{A}) \cdot \widehat{\mathbf{n}} \, dS$$

where $\mathbf{A} = (y - z, z - x, x - y)$. Here S is the upper half of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ with $z \ge 0$, and $\hat{\mathbf{n}}$ is the unit normal to S with $\hat{\mathbf{n}} \cdot \mathbf{k} > 0$.

A. G. Walton

8. Verify Stokes theorem for the vector field

$$\mathbf{A} = (3x - y, -yz^2/2, -y^2z/2)$$

where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = a^2$, so that the closed curve C is a circle in the x - y plane.

Hint: to evaluate the surface integral use spherical polar coordinates $x = a \sin \theta \cos \phi$, $y = a \sin \theta \sin \phi$, $z = a \sin \theta \sin \phi$, $a\cos\theta$, with $dS = a^2\sin\theta \,d\theta \,d\phi$, and $0 \le \theta \le \pi/2, \, 0 \le \phi \le 2\pi$.

9. Let S consist of the part of the cone $z = (x^2 + y^2)^{1/2}$ for $x^2 + y^2 \le 9$ and suppose

$$\mathbf{A} = (-y, x, -xyz).$$

Verify that Stokes theorem is satisfied for this choice of ${\bf A}$ and S.

Sheet 3 Answers

2. 3V.

5. LHS = RHS = $8a^3$. 6. LHS = RHS = π . 7. $-2\pi ab$.

8. LHS = RHS = πa^2 . 9. LHS = RHS = 18π .