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Sheet 4 Solutions

1. (u,v) =(1,0) = (z,y) = (1,1). Consider

J_a(:zr,y)_ Ox/ou Oz/Ov \ _ [ 3u>+v u+ 302
“O(u,v)  \ Oy/ou Oy/ov ) 2u —2v '

Then
det(J) = —2v(3u? +v) — 2u(u + 3v?) = =2

when (u,v) = (1,0). Since det(.J) # 0 at this point, the inverse function theorem tells us that locally the
expressions for z and y can be inverted.
To find u, and v,, differentiate the expressions for x and y implicitly with respect to x to get

1= 3u2uI + vuy, + uv, + 31127117 0 = 2uuy, — 2vv,.

3u?+v w4302 ug \ [ 1
2u —20v vy, /) \0 )~

(Note that the matrix on the left is the Jacobian calculated earlier). Thus, after substituting (u,v) =

R DNOREAORO!

Similarly, by differentiating with respect to y and setting (u,v) = (1,0) :

(o) ()= (V)
from which we obtain
()=o) (0)=( 22) (1) - ()

2. (i) First we differentiate our expressions implicitly with respect to x. This gives

This can be rewritten as

2uuy, + dvv, = 22, VYu, + YUy — YV, = VY,
which can be written in matrix form as
<2u 4v )(ux):(Qx)
VYUY — Y Vg vy )
Differentiating the original expressions with respect to y :

2uuy + 4vvy, = =2y,  VYUy + UYVy — TYVy = VT — UV,

2u 4v Uy \ —2y
vy uy — xY vy ) \vz—u )’

In both cases the derivatives exist at (z, yo, uo, vg) provided

det(.J) = det ( 2uo 420 ) £0

VoYo UoYo — LoYo

i.e.

as required.
Consider (z,y,u,v) = (1,1,2,1). Then u? + 2v? + y? — 22 = 6 and uvy — vy = 1 so that both
equations are satisfied. In this case

4 4
det(J):det(1 1)20
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and so the partial derivatives are undefined at this point.
Now let (z,y,u,v) = (14+v/2, —1—+/2,2,1). Then u?+20? +y? —2? = 224+ 2+ (1+v2)? — (1+v2)? = 6
and wvy — vry = —2(1 4 v/2) + (1 ++/2)? = 1, so that again both equations are satisfied. This time

det(J):det( s f)%o

and so at this point the partial derivatives u,, vs, uy, vy do exist.
(ii) Here Fy (2, y,u,v) = u?+20v2 +94? — 2% — 6 and Fy(x,y,u,v) = uvy —vry—1, and so (with x,y, u, v
treated as independent quantities):

OF1/0u OF/0v \ [ 2u 4u
OFy/0u OFy/0v ) \ vy wy—=zy )’

and so the determinant of this matrix at (xo, Yo, uo, vo) is indeed the determinant derived in part (i).

(iii) We saw in part (i) that two distinct points (xg,yo) map to the same (ug,vo). This would mean
for example that two particles occupying different locations in the x — y plane would occupy the same
location in the u — v plane.

3. To show that the system is orthogonal we have to work out dr/0¢ and dr/0dn and show that these
vectors are orthogonal.

or or., Oy,
o ~ o o
_ ccosh & csinh? ¢ csinnsinh &
B <cosh§ —cosn  (cosh& — cos n)2> ' (cosh & — cosn)Q‘]'
or B or, Oy,
m = oo
_ —csingsinh§ CcCcos T esin®n .
~ (cosh¢ — cos 77)21 (coshf —cosn (cosh& — cos 77)2> '

So then we see that

Or Or  —csinnsinh§ ccosh csinh? & ccosm B csin’® 7y
o¢ 9n  (cosh& —cosn)? \coshé —cosn  (cosh& —cosn)2  coshé —cosny  (cosh& — cosn)?
= ...=0,

so that the system is indeed orthogonal.
To find the scale factors, first simplify

or ¢ cosh? € — ¢ cosh € cosn — ¢ sinh? &

aE (cosh & — cosn)?
¢(1 — cosh £ cosn)

(cosh & — cosn)? -~

Then
ox\? Jy 2 B c? 1 b 2 gn? ) sinh?
(85) +<Z9§) = m{( — cosh§ cosn)® + sin® nsinh”® £}
— c? . )2
= m(c%hf—cosﬁ)
2
~ (cosh & —cosn)?
Hence
_|or| oz’ a\” _ c
’““as - ((65) +<3£)>_(h£n)




A. G. Walton MATH50004 Multivariable Calculus 3

Similarly:
RS S N
> on| on on ~ (cosh& —cosn)’
Finally:
or
=|=|=1
ha 0z
4. First we work out
Or/0u = ui+ vj = hi€;, Or/0v = —vi+ uj = hoes.
Then o o 5
= = 71. = 71. = 2 2 1/2 = l :1
hi ho u 0 (’LL —|—U) , h3 92 .

It then follows that

~

&1 = (ui+0j)/(u® + )2, & = (—vi+uj)/(u® +0*)'/?, & =k

5. (i) Using our expression for div in curvilinear coordinates, with the values of hi, ha, hg calculated in

the previous question, along with F; = u(u? 4+ v?)%/2, Fy = —v(u? 4 v?)%/2, F3 = 0, we have
1 0 0
divF = — | —(hohsF: hgh F:
v h1h2h3 <8u( 273 1) + 31}( 3 2)>
_ 1 9 2, 22 O 2, 2\2
= W <8u(u(u + v%) (%(v(u +v7)

1
= @i ((W® +0*)? + 40 (W +0%) — (1 +0%)? — d*(u® +0?))
= 4(u® —v?), as required.

(ii) Using the curvilinear formula for curl:

curlF = 0/0u 9f0v 0/0z | = ———< <(—U(u +v)° — —(u(u® 4+ v°) )
hlhghg thl h2F2 0 (U2 + U2) ou ov
= e3(—4uww — 4uv) = —8uves.

(iii) Using the expressions found for the unit vectors in Q4, we have

F = u(u®+ v2)3/2§1 — v(u2 + v2)3/2€2

= [u(w? +0*)*2(ui + vj) —v(u® +0*)** (—vi + )]/ (u® + %)

= i(u? 4 0?)(u® +0?)

= i[(u® —vH)? + 4?0

i(42? + 49?),
as required. Given the Cartesian form of F we can then calculate that
divF = 0/0z(4z* + 4y%) = 82 = 4(u? — v?),

which agrees with the earlier calculation. We can also calculate

curl F = —kd/0y(42? + 4y?) = —8yk = —8uwvk,

which agrees with the previous result since €3 = k.
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6. We have R
T=cosgi+jsing,¢=—ising+jcosp,z=k.
Rearranging:

i=Tcos¢— dsing,j=Tsing+ bcos .

Since x = rcos ¢,y = rsin ¢ we have
F=yi+zj+zk =rsing(rcosp — b sin @) + 2(rsing + & cos @) + (rcos 9)k,

so that
F. =rsingcos¢ + zsing, Fy = —rsin® ¢+ zcosd, F, = rcoso.
7. We need to work out the Jacobian determinant

ou/dx Ou/dy ‘:’ —2r 2y

A2 2
ov/0xr 0Ov/dy 2y 2z | 4" +y7).

deth’

Then we know that |det J| do dy = dudv = 4(x? +y?) dx dy = dudv. Also note that (22 +y?)? = u? +v2.
Then:

1 1
/(x2+y2)3dxdy=/(:c2+y2)2*dudv:*/(U2+”2)du‘iv~
R R 4 4 /R

We now have to work out the limits in terms of u and v. The region is bounded by 22 —¢y? =1 = u = —1
and y2 — 2% =1 = u = 1, together with zy = 1, zy = 2 which translate to v = 2 and v = 4. The required

integral is therefore
1 v=4 u=1
f/ / (u? +v?) du dv
4 v=2 =—1
v=4 3 1

1 Tu v=
2
= - 4 d
4 /’U:2 |: 3 e u:| u=—1 !

1 v=4 )
= = S+ 207 d
4/U=2 (3+ ) !
= ...=29/3.

8. In plane polars (r,0) we have x = r cos,y = rsinf. The relevant Jacobian determinant is

cos) —rsinf
sinf  rcosf

detJ:’ Ox/0r 0x/00 ‘

Qy/or dy/00

‘ =rcos20+rsin6 =r.

Thus we have dx dy = r dr df (a result we have made use of in earlier questions). We also have z* + y* =
r4cos? @ 4+ r*sin 0. In plane polars the circular disc is the region 0 < r < 1,0 < 6 < 27. The required
integral transforms to

2 1 27 671
/ / (r*cos* 0 + risin @)rdrdd = / (cos @ + sin 9) {T} do
o Jo 0 6 1o
1 27
= f/ (1 — 2cos?@sin? 0) df
6 Jo
1™ /3 1
= 6/0 <4+4cos40> do
= w/4.
9. The Jacobian determinant is
| Oufox Oufoy | |1 -1 |
det T =1 gy/oe ovioy | |1 1 |2

Thus we have 2dx dy = du dv. We note that the integrand (x+1y)? cos(x? —y?) can be written as v? cos uv.

It’s also useful to observe that u+v = 2z and v —u = 2y. The boundaries of the region therefore become
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u = £v (which intersect at v = 0) and v = 1. The integral is transformed to

1 v 1
1 1 —
/ / v?cos(uv) —dudv = = / [vsin(uwv)]i_", dv
0 —v 2 2 0

1
= / vsinv2dv
0

L /15' tdt 1(1 cos(1))
= - Sin = —(1 —cos(1)).
2 J, 2

10. We calculate

Or Jdr Oy 0z .
o (5,5,5)—(coss,sms70)
Or Oor 0y 0z
or _ 0T 0y O&\ . . 1
s (88’85’85) (=Asins, Acoss, 1),
and so
i i ok
J = @x§: COS § sins 0 | = (sins,—coss,\).

oN  0Os \si

—Asins Acoss 1

Thus |J| = v/1 + A2 and hence

27 1
Sz/dSz/ |J|d)\ds:/ / (1 + A)2d\ ds.
S S s=0 JA=0

Solve using the substitution A = sinht¢ to get

11 h
S =2m |=t+ —sinh2t| , where sinht; = 1.
2 4 0

Finally, sinh 2¢; = 2sinh ¢y cosht; = 2sinht4/1 + sinh?¢; = 21/2, and so

S = m(sinh (1) + v2).
11. We start by calculating

% = (—bsintcos, —bsintsinb,bcost)
% = (—(a+bcost)sinb, (a + bcost)cosh,0),
and then
or or . . 2 )
J= yn X = (—(a+bcost)(beostcosh), (a+bceost)(bcostsinb), —(a+ beost)(bsint)(cos” § + sin” 9))
and so

|J| = b(a+ bcos7§)\/cos2tcos2 6 + cos2 tsin? @ + sin®t = b(a + bcost).

The required integral is

27 2m
/ 22dS = / / (b%sin®t)(a + bcost) dt df
S 0=0Jt=0

2
= 2b? / (asin®t + bsin® t cost) dt
0

= 27%abd.



