Problem Sheet 4

1. A change of variables is given by

$$
x = u^3 + uv + v^3, \ y = u^2 - v^2.
$$

Find (x, y) when $(u, v) = (1, 0)$. Use the inverse function theorem to show that in the neighbourhood of this point, u and v are single-valued differentiable functions of x and y (although these functions cannot be written down explicitly). Calculate the partial derivatives of u and v with respect to x and y at this point.

2.(i) The variables (u, v) are expressed implicitly in terms of (x, y) as follows:

$$
u^2 + 2v^2 + y^2 - x^2 = 6, \quad uvy - vxy = 1.
$$

Suppose that these equations are satisfied by $(x, y, u, v) = (x_0, y_0, u_0, v_0)$. By differentiating the above equations implicitly with respect to x and y, show that $\partial u/\partial x$, $\partial v/\partial x$, $\partial u/\partial y$, $\partial v/\partial y$ all exist at (x_0, y_0, u_0, v_0) provided

$$
\det \left(\begin{array}{cc} 2u_0 & 4v_0 \\ v_0y_0 & u_0y_0 - x_0y_0 \end{array} \right) \neq 0.
$$

Show that two possible solutions for (x_0, y_0, u_0, v_0) are $(1, 1, 2, 1)$ and $(1 + \sqrt{2}, -1 - \sqrt{2}, 2, 1)$. Show that the determinant condition is satisfied at one point but not at the other.

(ii) Consider the same equations but this time write them as a map (from \mathbb{R}^4 to \mathbb{R}^2) given by

$$
F(x, y, u, v) = (u2 + 2v2 + y2 - x2 - 6, uvy - vxy - 1) = 0.
$$

Show that the determinant condition derived in (i) is equivalent to the non-vanishing of the determinant of the Jacobian matrix

$$
\left(\begin{array}{cc}\partial F_1/\partial u & \partial F_1/\partial v\\ \partial F_2/\partial u & \partial F_2/\partial v\end{array}\right),
$$

at (x_0, y_0, u_0, v_0) where F_1, F_2 are the components of F.

The general form of this result is known as the **Implicit Function Theorem** (a consequence of the inverse function theorem) and will be seen in more detail in Differential Equations in Term 2.

(iii) Would the variables (u, v) as defined above in terms of x and y be a useful alternative coordinate system to the Cartesian one?

3. Bipolar coordinates (ξ, η, z) are given in terms of Cartesian coordinates (x, y, z) by

$$
x = \frac{c \sinh \xi}{\cosh \xi - \cos \eta}, \ \ y = \frac{c \sin \eta}{\cosh \xi - \cos \eta}, \ \ z = z,
$$

where c is a constant. Show that this coordinate system is orthogonal, and find the scale factors h_1, h_2, h_3 .

4. Consider the following curvilinear coordinate system (u, v, z) defined in terms of the Cartesian coordinates (x, y, z) as:

$$
x = \frac{1}{2}(u^2 - v^2), \ y = uv, \ z = z,
$$

with $u \geq 0$. Find the scale factors h_1, h_2, h_3 and express the unit vectors $\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3$ of the curvilinear coordinate system in terms of the Cartesian unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

5. The vector field \bf{F} is given in terms of the curvilinear coordinate system described in $\bf{Q4}$ as

$$
\mathbf{F} = u(u^2 + v^2)^{3/2}\hat{\mathbf{e}}_1 - v(u^2 + v^2)^{3/2}\hat{\mathbf{e}}_2.
$$

Show that

(i) div
$$
\mathbf{F} = 4(u^2 - v^2)
$$
,
\n(ii) curl $\mathbf{F} = -8uv \hat{\mathbf{e}}_3$,
\n(iii) $\mathbf{F} = 4(x^2 + y^2) \mathbf{i}$.

Using the result in (iii), confirm your answers to (i) and (ii) by carrying out the calculations in Cartesian coordinates.

6. Find the unit vectors $\hat{\mathbf{r}}, \hat{\phi}, \hat{\mathbf{z}}$ of a cylindrical polar coordinate system (r, ϕ, z) in terms of i,j, k. Solve for **i**, **j**, **k** in terms of $\hat{\mathbf{r}}, \hat{\phi}, \hat{\mathbf{z}}$. Represent the vector

$$
\mathbf{F} = y\,\mathbf{i} + z\,\mathbf{j} + x\mathbf{k}
$$

in cylindrical coordinates and determine F_r , F_ϕ and F_z .

7. Using the substitution

$$
u = y^2 - x^2, \ v = 2xy,
$$

evaluate the integral

$$
\int_R (x^2 + y^2)^3 dx dy
$$

where R is the finite region in the first quadrant, bounded by the curves $x^2 - y^2 = 1$, $y^2 - x^2 = 1$, $xy = 1$ and $xy = 2$.

8. Use plane polar coordinates to evaluate the integral

$$
\int_R (x^4 + y^4) \, dx \, dy
$$

where R is the circular disc $x^2 + y^2 \leq 1$.

9. Use the transformation

$$
u = x - y, v = x + y,
$$

to evaluate

$$
\int_R (x+y)^2 \cos(x^2 - y^2) \, dx \, dy
$$

where R is the region in the $x - y$ plane enclosed by the lines $y = 0, x = 0$ and $y = 1 - x$.

10. Find the surface area of the parameterized helicoid

$$
x = \lambda \cos s, \ y = \lambda \sin s, \ z = s,
$$

with $0 \le \lambda \le 1$ and $0 \le s \le 2\pi$.

11. Find

$$
\int_{S} z^2 \, dS,
$$

where S is the surface of a torus, parameterized as

$$
x = (a + b\cos t)\cos\theta, \ \ y = (a + b\cos t)\sin\theta, \ \ z = b\sin t,
$$

with $0 \le \theta \le 2\pi$, $0 \le t \le 2\pi$ and $a > b > 0$.

Sheet 4 Answers

1. $(x, y) = (1, 1), u_x = 0, v_x = 1, u_y = 1/2, v_y = -3/2.$ 2. (iii) No (explain why not!) 3. $h_1 = c/(\cosh \xi - \cos \eta) = h_2; h_3 = 1.$ $4. h_1 = (u^2 + v^2)^{1/2} = h_2; h_3 = 1; \hat{\mathbf{e}}_1 = (u\mathbf{i} + v\mathbf{j})/(u^2 + v^2)^{1/2}, \hat{\mathbf{e}}_2 = (-v\mathbf{i} + u\mathbf{j})/(u^2 + v^2)^{1/2}, \hat{\mathbf{e}}_3 = \mathbf{k}.$ 6. $\hat{\mathbf{r}} = \mathbf{i} \cos \phi + \mathbf{j} \sin \phi$, $\hat{\phi} = -\mathbf{i} \sin \phi + \mathbf{j} \cos \phi$, $\hat{\mathbf{z}} = \mathbf{k}$; $\mathbf{i} = \mathbf{\hat{r}} \cos \phi - \phi \sin \phi, \mathbf{j} = \mathbf{\hat{r}} \sin \phi + \phi \cos \phi;$ $F_r = r \sin \phi \cos \phi + z \sin \phi, F_{\phi} = -r \sin^2 \phi + z \cos \phi, F_z = r \cos \phi.$ 7. 29/3. 8. $\pi/4$. 9. $\frac{1}{2}(1-\cos(1)).$ 10. $\pi(\sinh^{-1}(1) + \sqrt{2}).$ 11. $2\pi^2ab^3$.