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Sheet 5 Solutions

1. For x > 0 we have q′(x) = (1/x2)e−1/x, q′′ = −(2/x3)e−1/x + (1/x4)e−1/x etc. We can see that each
derivative is continuous except perhaps at x = 0. However the function decays exponentially as x → 0 so
that 0 = limx→0+ q = limx→0+ q′ = limx→0+ q′′ etc. Therefore since q = 0 for x = 0 the derivatives are
indeed continuous at x = 0. For x < 0 we have q(x) ≡ 0 and so the function is trivially smooth in this
region.
Since h is just a product of two smooth functions it is also smooth and it is easy to see that it is only
‘switched on’ when 0 < x < 1. When it is ’switched on’ it is the product of two exponential functions
and so is always positive and hence

∫ 1

0
h(x) dx > 0.

To change the interval to (x1, x2) we simply consider the function h((x − x1)/(x2 − x1)).

2. We have y = x3 + ε sin 2πx =⇒ y′ = 3x2 + 2πε cos 2πx

⇒ I =
∫ B

A
12x4 + 12εx sin 2πx + 9x4 + 4πε2 cos2 2πx + 12επx2 cos 2πx dx

⇒ I ′(0) =
∫ 1

0
12x sin 2πx + 12πx2 cos 2πx dx

= (by parts) =
∫ 1

0
12x sin 2πx + [6x2 sin 2πx]10 −

∫ 1

0
12x sin 2πx dx = 0.

Thus I is staionary and the extremal curve is y = x3.
Consider f = 12xy + (y′)2. Then ∂f/∂y = 12x, ∂f/∂y′ = 2y′.
Then the E-L equation is 12x − 2y′′ = 0 ⇒ y′ = 3x2 + c ⇒ y = x3 + cx + d.
Applying y(0) = 0, y(1) = 1 ⇒ c = d = 0 and hence y = x3.

The stationary value of I is
∫ 1

0
12x4 + 9x4 dx = 21/5.

3. Let f(x, y, y′) = 2xyy′ + y′2 ⇒ ∂f/∂y = 2xy′, ∂f/∂y′ = 2xy + 2y′.
Subst into E-L equation to get 2xy′ − (2y + 2xy′ + 2y′′) = 0 ⇒ y′′ + y = 0 ⇒ y = A sin x + B cos x.
Boundary conditions: y(0) = 0 ⇒ B = 0, y(π/2) = 1 ⇒ A = 1 ⇒ y = sin x.

4. Applying the end conditions we see that x1 = β cosh(γ/β), x2 = β cosh((y2 − γ)/β). If x1 is small
then we require β to be small, since cosh(γ/β) ≥ 1. But if β is small we also need γ small, otherwise the
cosh term will become large. By a similar argument we also need (y2 − γ) to be small but this is not
possible since γ is small and y2 is assumed large. This means that if we have a surface linking two discs
and continue to separate the discs, the surface will eventually break as can be seen in the video.

5. Let f(r, θ, θ′) = r2(1 + r2θ′2)1/2, independent of θ.
Then the E-L equation reduces to ∂f/∂θ′ = constant ⇒ r4θ′/(1 + r2θ′2)1/2 = c1.
Rearranging: θ′2 = c2

1/(r2(r6 − c2
1)) ⇒ θ =

∫
c1/(r(r6 − c2

1)
1/2) dr+ constant.

Make substitution r3 = c1 sec u ⇒ 3r2dr = c1 sec u tan u du ⇒ (dr/r) = (1/3) tan u du
and (r6 − c2

1)
1/2 = c1(sec2 u − 1)1/2 = c1 tan u.

Therefore θ = (1/3)u+ constant ⇒ sec(3θ + c2) = sec u = r3/c1 ⇒ r3 = c1 sec(3θ + c2).

6. Recall that in spherical polars: (ds)2 = (dr)2 + r2(dθ)2 + r2 sin2 θ (dφ)2.
If we are constrained to the surface of a sphere of radius 1 then r = 1 and dr = 0
so that ds = ((dθ)2 + sin2 θ(dφ)2)1/2 and so L =

∫
ds =

∫
(1 + sin2 θ(dφ/dθ)2)1/2dθ, as required.

Let f(θ, φ, φ′) =.(1 + sin2 θ(φ′)2)1/2, which is independent of φ.
The E-L equation therefore reduces to ∂f/∂φ′ = constant
⇒ φ′ sin2 θ(1 + sin2 θ(φ′)2)−1/2 = K. Rearranging: φ′ = K csc θ/(sin2 θ − K2)1/2.
Multiply top and bottom by csc θ: φ′ = K csc2 θ/(1−K2 csc2 θ)1/2 ≡ K csc2 θ/((1−K2)−K2 cot2 θ)1/2

Integrating and setting u = cot θ, du = − csc2 θ dθ we have
φ = −

∫
K/((1 − K2) − K2u2)1/2du = − sin−1(Ku/(1 − K2)1/2) + α

⇒ sin(α − φ) = Ku/(1 − K2)1/2 = βu, say. Thus β cot θ = sin(α − φ) as required.

7. Define v(x) = f(x) − λg(x). Then v(x) is continuous.
Now

∫ x2

x1
g(x)v(x) dx =

∫ x2

x1
g(x)f(x) dx − λ

∫ x2

x1
(g(x))2dx = 0, in view of the definition of λ.

Therefore
∫ x2

x1
f(x)v(x) dx = 0. However,

∫ x2

x1
f(x)v(x) dx =

∫ x2

x1
(v(x))2dx+λ

∫ x2

x1
g(x)v(x) dx =

∫ x2

x1
(v(x))2dx.

Thus
∫ x2

x1
(v(x))2dx = 0 and hence v(x) ≡ 0 ⇒ f(x) = λg(x).

8. Apply the E-L equation to f(y, y′) = y′2 + λy (independent of x).
⇒ f − y′∂f/∂y′ = constant, i.e. y′2 + λy − 2y′2 = constant.
Integrating:

∫
dy

(λy+k)1/2 =
∫

dx ⇒ x + c = (2/λ)(λy + k)1/2.

Boundary conditions y(0) = 0 ⇒ c2 = 4k/λ2. y(−1) = 0 ⇒ c = 1/2.
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Thus y = (λx/4)(x + 1). To find λ substitute into
∫ 1

0
y dx = 1.

⇒ (λ/4)
∫ 1

0
x2 + x dx = 1 ⇒ λ = 24/5 ⇒ y = (6/5)x(x + 1).

Therefore I =
∫ 1

0
y′2dx = (36/25)

∫ 1

0
(2x + 1)2dx = 156/25.

9. Let f(x, y, y′) = x2y′2 + 2y2. The E-L equation becomes 4y − d
dx (2x2y′) = 0

⇒ x2y′′ + 2xy′ − 2y = 0. This is a Cauchy-Euler type ode which can be reduced to constant coefficients
by the substitution x = es ⇒ d2y/ds2 + dy/ds − 2y = 0 ⇒ y = Ae−2s + Bes ⇒ y(x) = Bx + A/x2.
Applying end conditions: y(1) = 0 ⇒ A + B = 0; y(2) = 1 ⇒ 1 = 2B + A/4 ⇒ A = −4/7, B = 4/7
⇒ y(x) = (4/7)(x − 1/x2), as required.
To impose the constraint apply the E-L equation to f = x2y′2 + 2y2 + λy/x.
E-L equation becomes x2y′′ + 2xy′ − 2y = λ/2x.
As above, the solution of the homogeneous equation is Bx + A/x2.
To find the particular solution again use the substitution x = es so that the ode becomes
d2y/ds2 + dy/ds − 2y = (1/2)λe−s.
For the particular solution try y = βe−s and substitute in to find β = −λ/4.
Solution is therefore y(x) = Bx + A/x2 − λ/4x.
Apply end conditions to get A = −4/7 + 3λ/14, B = 4/7 + λ/28.
(Note that the values for A,B agree with those obtained previously when λ = 0).
To find λ substitute into integral constraint: 1/4 =

∫ 2

1
(B + A/x3 − λ/4x2)dx = B + 3A/8 − λ/8.

Substitute in values for A,B : 1/4 = 4/7 + λ/28 + (3/8)(−4/7 + 3λ/14) − λ/8 ⇒ λ = 12
⇒ A = 2, B = 1. Hence the new extremal curve is y = 2/x2 + x − 3/x.

10. Let f(x, y, y′) = m2y2 − y′2 + λy cos nx.
The E-L equation yields 2m2y + λ cos nx + 2y′′ = 0 ⇒ y′′ + m2y = −(λ/2) cos nx.
The complementary solution is A cos mx + B sin mx.
For the particular solution try C cos nx + D sin nx assuming m 6= n.
Upon substitution we find that D = 0, C = −(λ/2)/(m2 − n2).
Thus the general solution is y = A cos mx + B sin mx − (λ/2)/(m2 − n2) cos nx.
Applying the end conditions: y(0) = 1 ⇒ 1 = A − (λ/2)/(m2 − n2). y′(2π) = π/2 ⇒ B = π/2m.
So we have y = A cos mx + (π/2m) sin mx + (1 − A) cos nx. To find A use integral constraint.
π/2 =

∫ 2π

0
A cos mx cos nx + (π/2m) sin mx cos nx + (1 − A) cos2 nx dx = (1 − A)π ⇒ A = 1/2.

The solution when m 6= n is therefore y = (1/2)(cos mx + cos nx) + (π/2m) sin mx.
To determine what happens when m = n we need to go back to the ode y′′ + m2y = − (λ/2) cos mx.
The homogeneous solution is as above but now the RHS is contained in that solution.
This means we need to modify our trial function for the particular solution.
We try yp = Cx cos mx + Dx sin mx and find that C = 0, D = −λ/4m.
Thus the general solution now is y = A cos mx + B sin mx − (λ/4m)x sin mx.
The boundary conditions fix the constants as A = 1, B = (π/2m)(1 + λ).
We now substitute into the integral constraint to find λ :
π/2 =

∫ 2π

0
cos2 mx + (π/2m)(1 + λ) sin mx cos mx − (λ/4m)x sin mx cos mxdx

⇒ π/2 = π + 0 − (λ/8m)
∫ 2π

0
x sin 2mxdx.

Integrating by parts: π/2 = (λ/8m) [−(x/2m) cos 2mx]2π
0 + (λ/8m)(1/2m)

∫ 2π

0
cos 2mxdx.

The final integral is zero,leaving π/2 = −πλ/8m2 ⇒ λ = −4m2.
Finally, the solution for y when m = n is y = cos mx + (π/2m)(1 − 4m2) sin mx + mx sin mx.

11. Writing the minimal surface equation in Cartesian coordinates (x, y) we have
∂/∂x(fx/(1 + f2

x + f2
y )1/2) + ∂/∂y(fy/(1 + f2

x + f2
y )1/2) = 0

Expanding out and letting g = 1 + f2
x + f2

y :
(fxx + fyy)/g1/2 + fx(∂/∂x)g−1/2 + fy(∂/∂y)g−1/2 = 0
⇒ (fxx + fyy)g−1/2 − fx(fxfxx + fyfxy)g−3/2 − fy(fxfxy + fyfyy)g−3/2 = 0
⇒ g(fxx + fyy) − f2

xfxx − f2
y fyy − 2fxfyfxy = 0

⇒ (1 + f2
x)fyy + (1 + f2

y )fxx − 2fxfyfxy = 0, as required.
If f = ax + by + c then fyy = fxx = fxy = 0 and so the equation is satisfied trivially.
If f = log(cos x/ cos y) = log(cos x) − log(cos y) then fx = − tan x, fy = tan y and fxy = 0.
Also fxx = − sec2 x, fyy = sec2 y
and so (1 + f2

x)fyy + (1 + f2
y )fxx = (1 + tan2 x) sec2 y − (1 + tan2 y) sec2 x = 0.

Therefore this function also satisfies the minimal surface equation.


