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Problem Sheet 5

1. Show that the function
() = eV x>0
9r) = 0, x<0
is smooth (i.e. infinitely differentiable) at every value of z. Hence deduce that the function

h(z) = q(z)q(1 — )

possesses the following properties:

(i) h(x) is smooth for all x;
(ii) h(z) is zero outside the interval (0, 1);
(iii) f h(z)dz > 0.

How can we modify h so that it vanishes outside an interval (z,z2) with f;lz h(z)dz > 0?
(This is a suitable function for use in the proof of the ‘Vanishing Lemma’).

2. The equation y = 22 + ¢ sin 2mx where ¢ is a parameter, describes a set of paths from the point A(0,0)
to the point B(1,1). Substitute for y in the integral

I:/A (12zy + (v')?) dz

and demonstrate explicitly that dI/de = 0 when € = 0. Hence deduce that y = x3 is an extremal curve of

I which passes through A and B. Confirm this fact by solving the appropriate Euler-Lagrange equation
and also calculate the corresponding stationary value of I.

3. Solve the Euler-Lagrange equation for the y(x) which makes the integral

/2
1= [ o + ) o
0

stationary, given y = 0 when z = 0 and y = 1 when z = 7/2.

4. In lectures we showed that the minimal surface of revolution is given by rotating the curve

y==+03 cosh_l(m/ﬁ) +

about the y—axis. If we suppose that y(z1) = 0 and y(z2) = yo, write down expressions for z; and x5 in
terms of the other parameters. Show that no solution is possible if z; and zo are small but ys is large.
To see what is happening physically see https://www.youtube.com/watch?v=mziis4pbBOw.

5. Find the extremal curves for the integral
1/2
ao\®
I:/r2<1+r2<>> dr.
dr

6. Show that the distance L between two points on a sphere of radius 1 can be written in the form

doN 2 1/2
L/<1+ <d‘£> sin29> de.

Show that the extremal curve for this integral can be written in the form sin(a — ¢) = B cot 8. This curve
is known as a ‘great circle’.
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7. Suppose f and g are continuous functions on [z, xs], and

/ Y p@)f@) dz =0

1

for all continuous functions 7 such that

Define
@) dr
o (9(2))?dx
Show that
f(z) = Ag(z).

(This result is needed for deriving the Euler-Lagrange equation for problems involving constraints).

I= /Ol(y’)zdx

1
Jz/ ydr =1
0

and the end conditions y(0) = 0 and y(—1) = 0.

8. Find the stationary value of the integral

subject to the constraint

9. Show that the extremal curve y = y(x) of the integral

2 2
d
I:/ x2<dz> 242 dx
1

which passes through the points (1,0) and (2,1) in the  — y plane is given by

If the constraint

is added to the problem, find the new extremal curve of I.
10. Show that the extremal curve y = y(z) of the integral
27
I= m?y? — (y)dx
0

satisfying the conditions
y(0) =1, y'(2m) = 7/2,
27
/ y(z) cosnzdx = /2,
0
with m and n integers, is given by

™ .
(cos max + — sinmax + cos n:c)
m

N~

y:

provided m # n. Find the corresponding curve when m = n.
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11. In lectures we showed that the minimal surface equation has the form

(i)
(1+ [V f})1/2

where f = f(z,y). Demonstrate that when expanded out this equation takes the form

L+ f) faw + U+ [ fyy = 2fafyfay = 0.

Show that both the plane f = az + by + ¢ and the Scherk surface f = log(cosz/cosy) are solutions of
this equation.

Answers
2. I =21/5;
3. y =sinuz;
5. 13 = c1sec(30 — ca);
8. I = 156/25;
9. y=2/2>+x—3/z;
10. y = cosmz + (7/2m)(1 — 4m?) sin mzx + mz sin mzx.



