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Problem Sheet 5

1. Show that the function

q(x) =

{
e−1/x, x > 0
0, x ≤ 0

is smooth (i.e. infinitely differentiable) at every value of x. Hence deduce that the function

h(x) = q(x)q(1− x)

possesses the following properties:

(i) h(x) is smooth for all x;
(ii) h(x) is zero outside the interval (0, 1);

(iii)
∫ 1
0
h(x) dx > 0.

How can we modify h so that it vanishes outside an interval (x1, x2) with
∫ x2
x1
h(x) dx > 0?

(This is a suitable function for use in the proof of the ‘Vanishing Lemma’).

2. The equation y = x3+ε sin 2πx where ε is a parameter, describes a set of paths from the point A(0, 0)
to the point B(1, 1). Substitute for y in the integral

I =

∫ B

A

(12xy + (y′)2) dx

and demonstrate explicitly that dI/dε = 0 when ε = 0. Hence deduce that y = x3 is an extremal curve of
I which passes through A and B. Confirm this fact by solving the appropriate Euler-Lagrange equation
and also calculate the corresponding stationary value of I.

3. Solve the Euler-Lagrange equation for the y(x) which makes the integral

I =

∫ π/2

0

(2xyy′ + (y′)2) dx

stationary, given y = 0 when x = 0 and y = 1 when x = π/2.

4. In lectures we showed that the minimal surface of revolution is given by rotating the curve

y = ±β cosh−1(x/β) + γ

about the y−axis. If we suppose that y(x1) = 0 and y(x2) = y2, write down expressions for x1 and x2 in
terms of the other parameters. Show that no solution is possible if x1 and x2 are small but y2 is large.
To see what is happening physically see https://www.youtube.com/watch?v=mziis4pbBOw.

5. Find the extremal curves for the integral

I =

∫
r2

(

1 + r2
(
dθ

dr

)2)1/2

dr.

6. Show that the distance L between two points on a sphere of radius 1 can be written in the form

L =

∫ (

1 +

(
dφ

dθ

)2
sin2 θ

)1/2

dθ.

Show that the extremal curve for this integral can be written in the form sin(α−φ) = β cot θ. This curve
is known as a ‘great circle’.
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7. Suppose f and g are continuous functions on [x1, x2], and

∫ x2

x1

η(x)f(x) dx = 0

for all continuous functions η such that

∫ x2

x1

η(x)g(x) dx = 0.

Define

λ =

∫ x2
x1
f(x)g(x) dx

∫ x2
x1
(g(x))2dx

.

Show that
f(x) = λg(x).

(This result is needed for deriving the Euler-Lagrange equation for problems involving constraints).

8. Find the stationary value of the integral

I =

∫ 1

0

(y′)2 dx

subject to the constraint

J =

∫ 1

0

y dx = 1

and the end conditions y(0) = 0 and y(−1) = 0.

9. Show that the extremal curve y = y(x) of the integral

I =

∫ 2

1

x2
(
dy

dx

)2
+ 2y2 dx

which passes through the points (1, 0) and (2, 1) in the x− y plane is given by

y =
4

7

(

x−
1

x2

)

.

If the constraint ∫ 2

1

y

x
dx =

1

4

is added to the problem, find the new extremal curve of I.

10. Show that the extremal curve y = y(x) of the integral

I =

∫ 2π

0

m2y2 − (y′)2dx

satisfying the conditions

y(0) = 1, y′(2π) = π/2,
∫ 2π

0

y(x) cosnx dx = π/2,

with m and n integers, is given by

y =
1

2

(
cosmx+

π

m
sinmx+ cosnx

)

provided m 6= n. Find the corresponding curve when m = n.
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11. In lectures we showed that the minimal surface equation has the form

div

(
∇f

(1 + |∇f |2)1/2

)

= 0.

where f = f(x, y). Demonstrate that when expanded out this equation takes the form

(1 + f2y )fxx + (1 + f
2
x)fyy − 2fxfyfxy = 0.

Show that both the plane f = ax + by + c and the Scherk surface f = log(cos x/ cos y) are solutions of
this equation.

Answers

2. I = 21/5;
3. y = sinx;
5. r3 = c1 sec(3θ − c2);
8. I = 156/25;
9. y = 2/x2 + x− 3/x;
10. y = cosmx+ (π/2m)(1− 4m2) sinmx+mx sinmx.


