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Solutions to Problem Sheet 1

Exercise 1.

We need to satisfy the solution identity λ̇(t) = a(t)λ(t) + g(t), which reads with the given ansatz for
λ as

ċ(t) exp
( ∫ t

t0
a(s) ds

)
+ c(t) exp

( ∫ t
t0
a(s) ds

)
a(t) = a(t)c(t) exp

( ∫ t
t0
a(s) ds

)
+ g(t) .

This implies ċ(t) = g(t) exp
( ∫ t0

t a(s) ds
)
, so c solves the differential equation

ẋ = g(t) exp

(∫ t0

t
a(s) ds

)
,

the right hand side of which does not depend on x, so the solution follows from simple integration.
More precisely, using the initial condition λ(t0) = x0, which reads as c(t0) = x0, we get

λ(t) =

(
x0 +

∫ t

t0

g(s)e
∫ t0
s a(τ) dτ ds

)
e
∫ t
t0
a(τ) dτ

for all t ∈ R ,

and a verification that this function solves the initial value problem can be done easily. Now assume
there is another solution µ : R→ R of this initial value problem. Then we calculate for the difference
ν(t) := λ(t)− µ(t) that

ν̇(t) = λ̇(t)− µ̇(t) = a(t)λ(t) + g(t)− a(t)µ(t)− g(t) = a(t)ν(t) ,

so ν satisfies the initial value problem

ẋ = a(t)x , x(t0) = 0 .

which obviously has the zero solution t 7→ 0 for all t ∈ R. Assume there is another solution γ : R→ R
to this initial value problem. Consider

d

dt

(
γ(t)e

∫ t0
t a(τ) dτ

)
= γ̇(t)︸︷︷︸

=a(t)γ(t)

e
∫ t0
t a(τ) dτ − γ(t)a(t)e

∫ t0
t a(τ) dτ = 0 ,

hence γ(t) = be
∫ t
t0
a(τ) dτ

for some constant b ∈ R, and the initial condition implies b = 0, so γ(t) ≡ 0
is also the zero solution. It follows that ν(t) = 0 for all t ∈ R, and hence λ(t) = µ(t).

Exercise 2.

Assume that λ : I → R is a solution to this initial value problem. Since λ(0) = 0 and λ̇(0) = −1 < 0,
there exists an γ > 0 such that λ(t) < 0 for all t ∈ (0, γ) (why is this true? Ask in the problem class
if this is not fully clear to you). Thus, λ̇(t) = 1 for all t ∈ (0, γ). This contradicts the mean value
theorem, which says that there exists a τ ∈ (0, γ) with

λ(γ2 )− λ(0)︸ ︷︷ ︸
<0

= λ̇(τ)γ2︸ ︷︷ ︸
= γ

2
>0

.



Exercise 3.

(i) With f(x) := x2 for all x ∈ R, we get for all t ∈ R that

λ0(t) = 1 ,

λ1(t) = 1 +

∫ t

0
f(λ0(s)) ds = 1 + t ,

λ2(t) = 1 +

∫ t

0
f(λ1(s)) ds = 1 +

∫ t

0
(1 + s)2 ds = 1 +

1

3
(1 + t)3 − 1

3
= 1 + t+ t2 +

1

3
t3 ,

λ3(t) = 1 +

∫ t

0
f(λ2(s)) ds = 1 +

∫ t

0

(
1 + s+ s2 + 1

3s
3
)2

ds

= 1 + t+ t2 + t3 +
2

3
t4 +

1

3
t5 +

1

9
t6 +

1

63
t7 .

(ii) With A =

(
0 1
−1 0

)
, we get for all t ∈ R that

λ0(t) =

(
0
1

)
λ1(t) =

(
0
1

)
+

∫ t

0
Aλ0(s) ds = (Id +tA)

(
0
1

)
=

(
1 t
−t 1

)(
0
1

)
=

(
t
1

)
,

λ2(t) =

(
0
1

)
+

∫ t

0
Aλ1(s) ds =

(
0
1

)
+

∫ t

0

(
1
−s

)
ds =

(
t

1− 1
2 t

2

)
,

λ3(t) =

(
0
1

)
+

∫ t

0
Aλ2(s) ds =

(
0
1

)
+

∫ t

0

(
1− 1

2s
2

−s

)
ds =

(
t− 1

6 t
3

1− 1
2 t

2

)
.

Note that computing more Picard iterations will provide more terms from the Taylor expansion of
sin(t) in the first component and cos(t) in the second component.

Exercise 4.

Define d(t) := α(t) − λ(t) for all t ∈ I with t ≥ t0. The assumption implies that d(t0) ≥ 0. Assume
for contradiction that d(t) ≤ 0 for some t > t0 and define

τ := inf
{
t > t0 : d(t) ≤ 0

}
.

We note that this implies that d(τ) = 0 (⇔ α(τ) = λ(τ)), since d is continuous and d(t0) ≥ 0. We
distinguish two cases.

Case 1. τ = t0.
Then there exists a sequence {tn}n∈N, where tn > t0 with limn→∞ tn = t0 and d(tn) ≤ 0 for all n ∈ N.
This implies that

ḋ(t0) = lim
n→∞

≤0︷ ︸︸ ︷
d(tn)−

=0︷ ︸︸ ︷
d(t0)

tn − t0︸ ︷︷ ︸
≥0

≤ 0 .

This contradicts

ḋ(t0) = α̇(t0)− λ̇(t0) > f(t, α(t0))− f(t, λ(t0))
α(t0)=λ(t0)

= 0 .

Case 2. τ > t0.
Then there exists a sequence {tn}n∈N, where tn < τ with limn→∞ tn = τ and d(tn) > 0 for all n ∈ N.
This implies that

ḋ(τ) = lim
n→∞

>0︷ ︸︸ ︷
d(tn)−

=0︷︸︸︷
d(τ)

tn − τ︸ ︷︷ ︸
≤0

≤ 0 .
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Exactly as in Case 1, we get ḋ(τ) > 0, which is a contradiction and finishes the proof.

Exercise 5.

We show that there always exists a solution λ : R → R and a a > 0 such that λ(t + a) − λ(t) ∈ Z
for all t ∈ R. We distinguish two cases.

Case 1. f(x∗) = 0 for some x∗ ∈ R.
Due to Proposition 1.3, the constant function λ(t) := x∗ for all t ∈ R is a solution, and thus, for any
a > 0, we have λ(t+ a)− λ(t) = 0 ∈ Z.

Case 2. f(x) 6= 0 for all x ∈ R.
We use the hint and consider the unique solution λ : R → R of the initial value problem ẋ = f(x),
x(0) = 0. We assume without loss of generality that f(x) > 0 for all x ∈ R (note that f cannot change
sign due to continuity), which implies that λ is strictly monotonically increasing.
Firstly, we show that

lim
t→∞

λ(t) =∞ . (A)

To do so, assume this does not hold. Then monotonicity implies that there exists an x∗ ∈ R with
limt→∞ λ(t) = x∗. Due to f(x∗) > 0 and continuity of f , there exist δ > 0 and ε > 0 such that

f(x) ≥ δ for all x ∈ (x∗ − ε, x∗ + ε) .

Now there exists a τ > 0 such that λ(t) ∈ (x∗ − ε, x∗) for all t ≥ τ , which implies

λ̇(t) = f(λ(t)) ≥ δ for all t ≥ τ .

The mean value theorem implies that λ(t)−λ(τ) ≥ λ̇(t̃)(t− τ) for some t̃ = t̃(t) ∈ (τ, t), which implies
that λ(t) − λ(τ) ≥ δ(t − τ) for all t ≥ τ , and hence, limt→∞ λ(t) = ∞, which is a contradiction and
proves (A).
The intermediate value theorem implies that there exists an a > 0 with λ(a) = 1. We show now that
λ(t+ a)− λ(t) = 1 for all t ∈ R.
To do so, we first realise that the function µ(t) := λ(t) + 1 solves the initial value problem ẋ = f(x),
x(0) = 1. This follows from

µ̇(t) = λ̇(t) = f(λ(t)) = f(λ(t) + 1) = f(µ(t)) for all t ∈ R .

Due to translation invariance (Proposition 1.9), the function t 7→ λ(t+a) is also a solution of ẋ = f(x),
which satisfies the initial condition x(0) = λ(a) = 1. Due to the hint, we get λ(t + a) = µ(t), which
finishes the proof.
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