MATHS50004 Differential Equations
Spring Term 2021/22
Solutions to Problem Sheet 1

Exercise 1.

We need to satisfy the solution identity A(t) = a(t)A(t) + g(t), which reads with the given ansatz for
A as

¢(t) exp (ftg a(s)ds) + c(t) exp (ft’“; a(s)ds)a(t) = a(t)c(t) exp (f;; a(s)ds) + g(t).

This implies é¢(t) = g(t) exp ( ftto a(s)ds), so c solves the differential equation

i = g(t) exp (/tto als) ds) ,

the right hand side of which does not depend on x, so the solution follows from simple integration.
More precisely, using the initial condition A\(¢g) = xg, which reads as ¢(tg) = xo, we get

t t
A(t) = (xo + / g(s)els" amar ds> elo D for all t R,
to

and a verification that this function solves the initial value problem can be done easily. Now assume
there is another solution p : R — R of this initial value problem. Then we calculate for the difference
v(t) := A(t) — p(t) that

p(t) = A(t) = j1(t) = a()A(E) + g(t) — a(t)u(t) — g(t) = a(t)v(t),
so v satisfies the initial value problem
T =a(t)x, x(tp) =0.

which obviously has the zero solution ¢ — 0 for all ¢ € R. Assume there is another solution v : R — R
to this initial value problem. Consider

d to a\T T 2 ‘o a\T T to a\T T

= (FOT ) =51 ek @pa(pel” I~
=a(t)y(t)

t

hence ~(t) = belio M9 fo1 some constant b € R, and the initial condition implies b = 0, so y(t) = 0

is also the zero solution. It follows that v(¢) = 0 for all ¢ € R, and hence A(t) = u(t).

Exercise 2.

Assume that A : I — R is a solution to this initial value problem. Since A\(0) = 0 and A(0) = —1 < 0,
there exists an v > 0 such that A(t) < 0 for all ¢ € (0,7) (why is this true? Ask in the problem class
if this is not fully clear to you). Thus, A(t) = 1 for all ¢ € (0,7). This contradicts the mean value
theorem, which says that there exists a 7 € (0,7) with

A2) = A0) =\7)T .



Exercise 3.

(i) With f(x) := 2?2 for all x € R, we get for all ¢ € R that
Mo(t) =1,

t
Al(t):1+/ Fo(s))ds =1+t,
0
t t
Ag(t)=1+/0 f(Al(S))dszl-l-/O(1+3)2ds:1+;(1+t)3—:1)):1+t+t2+?1)t3,

t t
Ag(t):1+/ f(Az(s))dszl—k/ (1+s+82+%83)2d5
0 0
1 1.

2 1
=14+t+2+3+ P+ 20+ 6 4+ —¢7.
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(ii) With A = (_1 0

0 1), we get for all t € R that

(
M) = <(1)> + /O " Aho(s)ds = (Id +4) <(1)) - (_1t i) <(1)> - G) ,
()« ffameras= (1) [ (L) 4= ("))
- () oo ()- () )

Note that computing more Picard iterations will provide more terms from the Taylor expansion of
sin(t) in the first component and cos(t) in the second component.

Exercise 4.

Define d(t) := a(t) — A\(t) for all t € I with ¢ > t3. The assumption implies that d(¢o) > 0. Assume
for contradiction that d(¢) < 0 for some ¢ > ¢y and define

Ti=inf {t > to: d(t) <0} .
We note that this implies that d(7) = 0 (< a(r) = A(7)), since d is continuous and d(ty) > 0. We
distinguish two cases.

Case 1. T = ty.
Then there exists a sequence {t, }nen, where t, > to with lim,_, t, = to and d(t,) < 0 for all n € N.

This implies that
<0 =0

d(t d(t
d(to) — lim M <0.
n—o00 n — 1o
——
>0
This contradicts

; . ; a(to)=A(to)
d(to) = &(to) — A(to) > f(t,alto)) — f(t,A(to)) =" "0.

Case 2. T > tg.
Then there exists a sequence {t, }nen, where t, < 7 with lim,_,~ ¢, = 7 and d(t,) > 0 for all n € N.
This implies that
>0 -0
At — a0
d(T) = lim 7( n) = d(7)

n—o0 th — T

<0.

<0



Exactly as in Case 1, we get d(T) > 0, which is a contradiction and finishes the proof.

Exercise 5.

We show that there always exists a solution A : R — R and a a > 0 such that A(t + a) — A(t) € Z
for all t € R. We distinguish two cases.

Case 1. f(z*) =0 for some z* € R.
Due to Proposition 1.3, the constant function A(¢) := z* for all ¢ € R is a solution, and thus, for any
a >0, we have A(t +a) — A(t) =0 € Z.

Case 2. f(x) #0 for all x € R.

We use the hint and consider the unique solution A : R — R of the initial value problem = = f(z),
x(0) = 0. We assume without loss of generality that f(x) > 0 for all z € R (note that f cannot change
sign due to continuity), which implies that A is strictly monotonically increasing.

Firstly, we show that
lim A(t) = oo. (A)

t—o00

To do so, assume this does not hold. Then monotonicity implies that there exists an z* € R with
lim¢ 00 A(t) = z*. Due to f(z*) > 0 and continuity of f, there exist 6 > 0 and € > 0 such that

f(x)>9 forall x € (a*—e, 2" +¢).
Now there exists a 7 > 0 such that A(t) € (z* —¢,2*) for all ¢ > 7, which implies
At) = f(A\(#) >4 forall t>7.

The mean value theorem implies that A(t) — A(7) > A(£)(t —7) for some ¢ = i(t) € (7, ), which implies
that A(t) — A(7) > 0(t — 7) for all ¢ > 7, and hence, lim;_,o, A\(t) = oo, which is a contradiction and
proves (A).

The intermediate value theorem implies that there exists an a > 0 with A\(a) = 1. We show now that
AMt+a)—A(t)=1for all t € R.

To do so, we first realise that the function u(t) := A(t) + 1 solves the initial value problem & = f(x),
z(0) = 1. This follows from

() = A(t) = FO®) = FOME) +1) = f(u(t)) for all ¢ € R.

Due to translation invariance (Proposition 1.9), the function ¢ — A(t+a) is also a solution of & = f(x),
which satisfies the initial condition z(0) = A(a) = 1. Due to the hint, we get \(t + a) = u(t), which
finishes the proof.



