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Solutions to Problem Sheet 2

Exercise 6.

(i) We verify the three conditions given in Definition 2.4 in both cases.

Firstly, clearly, A = 0 implies ‖A‖ = 0. On the other hand, if A 6= 0, then there exist i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m} such that aij 6= 0. Consider the j-th unit vector ej . Then

‖Aej‖
‖ej‖ = ‖Aej‖ > 0,

which proves positive definiteness. Concerning absolute homogeneity, let b ∈ R and A ∈ Rn×m. Then

‖bA‖ = sup
x∈Rm\{0}

‖bAx‖
‖x‖

= sup
x∈Rm\{0}

|b|‖Ax‖
‖x‖

= |b|‖A‖ .

Given A,B ∈ Rn×m, the triangle inequality follows from

‖A+B‖ = sup
x∈Rm\{0}

‖(A+B)x‖
‖x‖

= sup
x∈Rm\{0}

‖Ax‖+ ‖Bx‖
‖x‖

≤ sup
x∈Rm\{0}

‖Ax‖
‖x‖

+ sup
x∈Rm\{0}

‖Bx‖
‖x‖

= ‖A‖+ ‖B‖ .

Concerning the max norm, positive definiteness is clear. Let b ∈ R and A ∈ Rn×m. Then

‖bA‖ = max
i=1,...,n,
j=1,...,m

|baij | = max
i=1,...,n,
j=1,...,m

|b||aij | = |b| max
i=1,...,n,
j=1,...,m

|aij | = |b|‖A‖ ,

which proves positive homogeneity. Given A,B ∈ Rn×m, the triangle inequality follows from

‖A+B‖ = max
i=1,...,n,
j=1,...,m

|aij + bij | ≤ max
i=1,...,n,
j=1,...,m

(|aij |+ |bij |) ≤ max
i=1,...,n,
j=1,...,m

|aij |+ max
i=1,...,n,
j=1,...,m

|bij | = ‖A‖+ ‖B‖ .

(ii) We prove this statement for K1 = 1 and K2 = m
√
n.

We first show ‖A‖max ≤ ‖A‖ for all A ∈ Rn×m. Fix i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Then

|aij | ≤

√√√√ n∑
`=1

a2`j = ‖Aej‖ ≤ ‖A‖ ,

and taking the maximum over i and j implies the claim.

We now show ‖A‖ ≤ m
√
n‖A‖max for all A ∈ Rn×m. We have

‖A‖ = max
‖x‖=1

‖Ax‖ ≤ max
‖x‖=1

∥∥∥∥∥∥∥‖A‖max

1 · · · 1
...

...
1 · · · 1

x

∥∥∥∥∥∥∥
≤ ‖A‖max max

‖x‖=1

∥∥∥∥∥∥∥
x1...
x1

+ · · ·+

xm...
xm


∥∥∥∥∥∥∥

≤ ‖A‖max max
‖x‖=1


∥∥∥∥∥∥∥
x1...
x1


∥∥∥∥∥∥∥+ · · ·+

∥∥∥∥∥∥∥
xm...
xm


∥∥∥∥∥∥∥


≤ ‖A‖maxm

∥∥∥∥∥∥∥
1

...
1


∥∥∥∥∥∥∥ = m

√
n‖A‖max ,



which finishes the proof.

Exercise 7.

The function in (i) is the only non-differentiable function and requires a slightly different treatment.
For differentiable functions, in the one-dimensional case, we can argue with the mean value theorem: a
bounded derivative implies Lipschitz continuity, and an unbounded derivative implies that the function
is not Lipschitz continuous. This argumentation goes as indicated in Example 2.6. In the higher-
dimensional case, we only get the mean value inequality (see Theorem 2.8), which can be used only
to prove Lipschitz continuity, but not to disprove it. Since all the higher-dimensional examples, given
by (iv) and (v) turn out to be Lipschitz continuous, all results for (i)–(v) follow from understanding
whether the derivative is bounded or unbounded.

(i) This function is not differentiable in 0, but in [0,∞) and (−∞, 0]. Since its derivative is equal to 1,
it is Lipschitz continuous on each of these two domains. Consider now x < 0 < y. Then

|f(y)− f(x)| = |y + x| ≤ |y|+ |x| = y − x = |y − x| ,

so f is Lipschitz continuous with Lipschitz constant K = 1 on R.

(ii) f is not Lipschitz continuous, because it is differentiable on (0, 1], but the derivative f ′(x) = 3x−
2
3

is unbounded on (0, 1).

(iii) f is differentiable with f ′(x) = − 1
x2

, and the absolute value of its derivative is bounded by the
Lipschitz constant K = 1, so f is Lipschitz continuous.

(iv) Note that f is a linear function, and its constant derivative is given by f ′(x, y) =

(
1 2
0 −1

)
,

independent of (x, y) ∈ R2. Hence f ′ is bounded by the Lipschitz constant

∥∥∥∥(1 2
0 −1

)∥∥∥∥, which can be

estimated above by K := 2
√

22 = 4
√

2 due to Exercise 6 (ii).

(v) We calculate f ′(x, y) =
(
−y(x2−y2−1)

(x2+y2+1)2
, x(x

2−y2+1)
(x2+y2+1)2

)
, and it is clear that ‖f ′(x, y)‖ is bounded on

the compact set {(x, y) ∈ R2 : x2 + y2 ≤ 4}. Due to Exercise 6 (ii), a (non-optimal) upper bound is
given by

∥∥(4 · (42 − 1), 4 · (42 + 1))
∥∥ ≤ 2 · 4 · 17 = 102. Note that the norm here is the (Euclidean)

operator norm on R1×2, and not the Euclidean norm on R2.

Exercise 8.

Assume there exists a T̃ > t0 + h such that all solutions to the initial value problem ẋ = f(t, x),
x(t0) = x0, do not exist at time T̃ . Define

T := inf
{
T̃ > t0 + h : all solutions satisfying the initial condition x(t0) = x0

do not exist at time T̃
}
.

This implies that there exists a solution λ :
[
t0−h, T− h

2

]
→ Rd of the initial value problem ẋ = f(t, x),

x(t0) = x0. Consider the initial value problem

ẋ = f(t, x) , x
(
T − h

2

)
= λ

(
T − h

2

)
.

Theorem 2.11 implies that there exists a solution µ :
[
T− 3h

2 , T+ h
2

]
→ Rd of this initial value problem.

Since λ(T − h
2 ) = µ(T − h

2 ), Lemma 2.15 implies that both solutions coincide on the intersection of

their domains, and λ can be extended up to time t = T + h
2 using the solution µ. This contradicts

the definition of T , and thus there exist solutions of the initial value problems on intervals unbounded
above. Similarly, one shows existence of solutions on intervals unbounded below.
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Exercise 9.

(i) We verify the three conditions given in Definition 2.4 and consider first the supremum norm ‖ · ‖∞.
Firstly, we get

‖u‖∞ = 0⇐⇒ sup
t∈[a,b]

‖u(t)‖ = 0⇐⇒ u(t) = 0 for all t ∈ [a, b]⇐⇒ u = 0 .

Secondly, for α ∈ R, we have

‖αu‖∞ = sup
t∈[a,b]

‖αu(t)‖ = sup
t∈[a,b]

|α|‖u(t)‖ = |α| sup
t∈[a,b]

‖u(t)‖ = |α|‖u‖∞ .

Finally, for any u, v ∈ C0([a, b],Rd), we get using the triangle inequality for the Euclidean norm and
an elementary property of the supremum that

‖u+ v‖∞ = sup
t∈[a,b]

‖u(t) + v(t)‖ ≤ sup
t∈[a,b]

(‖u(t)‖+ ‖v(t)‖) ≤ sup
t∈[a,b]

‖u(t)‖+ sup
t∈[a,b]

‖v(t)‖

= ‖u‖∞ + ‖v‖∞ .

Now consider the L1-norm ‖ · ‖1. Firstly,

‖u‖1 = 0⇐⇒
∫ b

a
‖u(t)‖ dt = 0

(∗)⇐⇒ u(t) = 0 for all t ∈ [a, b]⇐⇒ u = 0 .

(∗) requires some thought: while (⇐) is clear, assume that u(t0) 6= 0 for some t0 ∈ [a, b]. Continuity of
u then implies that there exists an ε > 0 and a δ > 0 such that ‖u(t)‖ ≥ ε for all t ∈ [t0−δ, t0+δ]. Hence∫ b
a ‖u(t)‖ dt ≥

∫ t0+δ
t0−δ ‖u(t)‖ dt ≥

∫ t0+δ
t0−δ εdt = 2εδ > 0. That proves the implication (⇒). Secondly,

‖αu‖1 =

∫ b

a
‖αu(t)‖ dt =

∫ b

a
|α|‖u(t)‖ dt = |α|

∫ b

a
‖u(t)‖ dt = |α|‖u‖1 ,

and finally, for any u, v ∈ C0([a, b],Rd), we get

‖u+ v‖1 =

∫ b

a
‖u(t) + v(t)‖ dt ≤

∫ b

a
(‖u(t)‖+ ‖v(t)‖) dt =

∫ b

a
‖u(t)‖dt+

∫ b

a
‖v(t)‖dt

= ‖u‖1 + ‖v‖1 .

(ii) The proof is divided into two steps.
Step 1. We show that the sequence

{
un
}
n∈N from the hint is a Cauchy sequence with respect to ‖ · ‖1.

Consider two natural numbers n,m with n ≥ m. Then we get

∥∥un − um∥∥1 =

∫ 1
m

− 1
m

|un(t)− um(t)|dt
un(t),um(t)∈[−1,1]

≤
∫ 1

m

− 1
m

2 dt =
4

m
. (A)

Let ε > 0, and choose N ∈ N such that 4
N < ε. Then (A) implies that we have that

∥∥un − um∥∥1 ≤ 4

min{n,m}
≤ 4

N
< ε for all n,m ≥ N ,

so the sequence
{
un
}
n∈N is a Cauchy sequence.

Step 2. The sequence
{
un
}
n∈N does not converge in the L1 norm.

Assume to the contrary that there exists a continuous function u∞ ∈ C0
(
[a, b],Rd

)
such that

lim
n→∞

‖un − u∞‖1 = 0 . (B)
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Obviously, u∞(0) 6= 1 or u∞(0) 6= −1. We only look at the case u∞(0) 6= 1, since the case u∞(0) 6= −1

can be treated analogously. Define ε := 1−u∞(0)
2 > 0. Due to continuity of the function u∞, there

exists a δ > 0 such that
|u∞(t)− u∞(0)| < ε for all t ∈ (−δ, δ) ,

which implies in particular that

u∞(t) ≤ 1− ε for all t ∈ (−δ, δ) .

Choose N ∈ N such that 1
n <

δ
2 for all n ≥ N . Then

‖un − u∞‖1 =

∫ 1

−1
|un(t)− u∞(t)|dt ≥

∫ δ

δ
2

|un(t)− u∞(t)|dt ≥
∫ δ

δ
2

εdt =
εδ

2
for all n ≥ N .

This is a contradiction to (B) and finishes the proof.

Exercise 10.

The proof is divided in two steps.
Step 1. We show that the sequence of functions

{
µn : J → Rd

}
n∈N0

, where µn(t) := f(t, λn(t)) for all

t ∈ J , is uniformly convergent with limit µ∞ : J → Rd, where µ∞(t) := f(t, λ∞(t)) for all t ∈ J .
Consider the compact set

S :=
{

(t, x) ∈ J × Rd : ‖x− λ∞(t)‖ ≤ 1
}
.

Let ε > 0 arbitrarily. The continuous function f is uniformly continuous on the compact set S, which
implies in particular that there exists a δ > 0 such that

‖f(t, x)− f(t, y)‖ < ε for all (t, x), (t, y) ∈ S with ‖x− y‖ < δ . (C)

Due to the uniform convergence of the sequence of functions
{
λn
}
n∈N to λ∞, there exists an N ∈ N

such that
‖λn(t)− λ∞(t)‖ < δ for all n ≥ N and t ∈ J ,

and using (C), this implies

‖µn(t)− µ∞(t)‖ = ‖f(t, λn(t))− f(t, λ∞(t))‖ < ε for all n ≥ N and t ∈ J ,

which finishes Step 1.
Step 2. We show that λ∞ satisfies the integral equation λ∞(t) = x0 +

∫ t
t0
f(s, λ∞(s)) ds

First we show that

lim
n→∞

∫ t

t0

µn(s) ds =

∫ t

t0

lim
n→∞

µn(s) ds =

∫ t

t0

µ∞(s) ds , (D)

which essentially needs uniform convergence of {µn}n∈N. This can be seen as follows. We have∫ t

t0

‖µn(s)− µ∞(s)‖∞ ds ≥
∫ t

t0

(µn(s)− µ∞(s)) ds ≥ −
∫ t

t0

‖µn(s)− µ∞(s)‖∞ ds ,

and since both left and right hand side of this inequality converge to 0 as n→∞, we get

lim
n→∞

∫ t

t0

(µn(s)− µ∞(s)) ds = 0 ,

which proves (D). Now λn+1(t) = x0 +
∫ t
t0
f(s, λn(s)) ds implies

λ∞(t) = lim
n→∞

λn+1(t) = lim
n→∞

(
x0 +

∫ t

t0

f(s, λn(s)) ds

)
= x0 + lim

n→∞

∫ t

t0

f(s, λn(s)) ds
(D)
= x0 +

∫ t

t0

f(s, λ∞(s)) ds ,

which finishes the proof.
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