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Solutions to Problem Sheet 4

Exercise 16.

(i) Assume that there exists a non-monotone solution µ : J → R. Then there exist t1 < t2 < t3 ∈ J
such that either

µ(t1) = µ(t3) < µ(t2) and µ(t2) ≥ µ(t) for all t ∈ [t1, t3]

or
µ(t1) = µ(t3) > µ(t2) and µ(t2) ≤ µ(t) for all t ∈ [t1, t3] .

It follows that µ̇(t2) = 0, and the solution identity implies 0 = µ̇(t2) = f(µ(t2)). Since a zero of the
right hand side corresponds to a constant solution, the function λ : R→ R, λ(t) = µ(t2), is a solution
and satisfies the initial condition x(t2) = µ(t2). But also the solution µ satisfies this initial condition,
and since solutions cannot cross under the local Lipschitz condition, µ and λ must coincide. This
contradicts the above assumption that µ is not monotone.

(ii) Assume to the contrary that f(c) 6= 0. Without less of generality, we have for the first component
f1(c) > 0, and the continuity of f implies

lim
t→∞

λ̇1(t) = lim
t→∞

f1(λ(t)) = f1

(
lim
t→∞

λ(t)
)

= f1(c) > 0 ,

which implies that there exists a T > 0 with λ̇1(t) ≥ f1(c)
2 for all t ≥ T . This implies the inequality

λ1(t) = λ1(T ) +

∫ t

T
λ̇1(s) ds ≥ λ1(T ) +

∫ t

T

f1(c)

2
ds = λ1(T ) +

f1(c)

2
(t− T ) for all t ≥ T ,

the right hand side of which clearly converges to∞ in the limit t→∞. This implies limt→∞ λ1(t) =∞,
in contradiction to the assumption.

Concerning the additional questions:

Firstly, we show how to argue in (i) if f is not necessarily Lipschitz continuous. Assume that there
exists a non-monotone solution µ : J → R. Then there exist t1 < t2 < t3 ∈ J such that either

µ(t1) = µ(t3) < µ(t2) and µ(t2) ≥ µ(t) for all t ∈ [t1, t3]

or
µ(t1) = µ(t3) > µ(t2) and µ(t2) ≤ µ(t) for all t ∈ [t1, t3] .

We concentrate on the first case only, since the second case can be treated analogously. Define

t̃1 := sup
{
t ≤ t2 : µ(t) = µ(t1)

}
∈ [t1, t2) .

The mean value inequality implies that there exist τ ∈ (t̃1, t2) such that

f(µ(τ)) = µ̇(τ) =
µ(t̃1)− µ(t2)

t̃1 − t2
> 0 , (A)

and we have µ(τ) ∈ [µ(t̃1), µ(t2)] due to the intermediate value theorem. This implies µ(τ) ∈
[µ(t3), µ(t2)], and thus,

τ̃ := inf
{
t ≥ t2 : µ(t) = µ(τ)

}
∈ (t2, t3] .

Now for all t ∈ [t2, τ̃ ], we have µ(t) ≥ µ(τ̃), due to the definition of the infimum. This implies

f(µ(τ̃)) = µ̇(τ̃) ≤ 0 ,



and this contradicts (A), since µ(τ̃) = µ(τ).

Secondly, the statement (ii) does not hold in the nonautonomous case. Consider the one-dimensional
linear equation

ẋ = −x+
1

t
− 1

t2
,

defined on D := R+ × R, and which has the general solution λ(t, t0, x0) = 1
t − e−(t−t0)( 1

t0
− x0)

for all (t, t0, x0) ∈ R+ × R+ × R (see also Exercise 1 or Proposition 3.10). Obviously, we get
limt→∞ λ(t, t0, x0) = 0, but the linear system does not have the zero solution.

Exercise 17.

It is possible to compute the flow of this differential equation by means of separation of variables:

ϕ(t, x) :=
x

x+ (1− x)e−t
,

where the flow ϕ(t, x) starting at x < 0 escapes in finite positive time to −∞, and the flow ϕ(t, x)
starting at x > 1 escapes in finite negative time to ∞. The flow starting in x ∈ [0, 1] exists for all
times.

Note that the exercise can be solved with this explicit representation of the flow, but it is also possible
to argue without this knowledge, which we will do in the following, since these arguments are applicable
to any one-dimensional autonomous system. We get the following different cases depending on x ∈ R.

(i) Case x > 1: t 7→ ϕ(t, x) is monotonically decreasing (Exercise 16 (i) and sign of right hand
side) and is bounded below in the limit t → ∞ (solution cannot cross the constant solution
in 1, see Lemma 2.15), so must converge, and with Exercise 16 (ii), we get limt→∞ ϕ(t, x) = 1.
Furthermore, in the limit t→ −∞ the solution cannot converge, since this would be converge an
equilibrium x∗ > 1 (Exercise 16 (ii)), which does not exist, so it diverges: limt→inf Jmax(x) =∞.

(ii) Case x = 1. ϕ(t, x) = 1 for all t ∈ R.

(iii) Case x ∈ (0, 1): with very similar arguments to (i), one shows ϕ(t, x) → 1 as t → ∞ and
ϕ(t, x)→ 0 as t→ −∞.

(iv) Case x = 0. ϕ(t, x) = 0 for all t ∈ R.

(v) Case x < 0: with very similar arguments to (i), one shows ϕ(t, x) → −∞ as t → sup Jmax(x)
and ϕ(t, x)→ 0 as t→ −∞.

This implies

O−
(
−2
)

= [−2, 0) and O+
(
−2
)

= (−∞,−2] ,

O−
(
0
)

= O+
(
0
)

= {0} ,
O−
(
1
2

)
=
(
0, 12
]

and O+
(
1
2

)
=
[
1
2 , 1
)
,

O−
(
1
)

= O+
(
1
)

= {1} ,
O−
(
2
)

= [2,∞) and O+
(
2
)

= (1, 2] .

Exercise 18.

(i) ϕ1 is obviously a flow, since it is generated by the differential equation ẋ = x. However, ϕ2 is not
a flow. This can be seen from

ϕ2(t+ s, x) = e(t+s)
2
x = et

2
e2tses

2
x = e2tset

2
ϕ2(s, x) = e2tsϕ2(t, ϕ2(s, x)) ,

and this means that the group property is violated for times t, s ∈ R with ts 6= 0.
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(ii) We differentiate the identity ϕ(s, ϕ(t, x)) = ϕ(s+ t, x) with respect to s and obtain using the chain
rule that

∂ϕ

∂t
(s, ϕ(t, x)) =

d

ds
ϕ(s, ϕ(t, x)) =

d

ds
ϕ(s+ t, x)) =

∂ϕ

∂t
(t+ s, x) .

Setting s = 0 gives
∂ϕ

∂t
(0, ϕ(t, x)) =

∂ϕ

∂t
(t, x) ,

and hence, the function ϕ(·, x) : R→ Rd is solution of the autonomous system

ẋ =
∂ϕ

∂t
(0, x) ,

the right hand side of which is continuously differentiable, so we have unique existence of solutions,
and the flow generated by this differential equation exists. Since the solutions ϕ(·, x) are defined on R,
they are maximal solutions. Moreover, we have the initial condition ϕ(0, x) = x for all x ∈ D, which
implies that ϕ is the flow of this differential equation.

Exercise 19.

Consider the general solution λ : Ω → R of the given differential equation. For all (t, t0, x0) ∈ Ω, we
get the two identities

∂λ

∂t
(t, t0, x0) = f(t, λ(t, t0, x0)) and λ(t0, t0, x0) = x0 . (A)

We differentiate the first identity with respect to x0 and obtain

∂

∂x0

∂λ

∂t
(t, t0, x0) =

∂f

∂x
(t, λ(t, t0, x0)) ·

∂λ

∂x0
(t, t0, x0) ,

and we can change the order of differentiation (since λ is twice differentiable according to the hint) to
obtain

∂

∂t

∂λ

∂x0
(t, t0, x0) =

∂f

∂x
(t, λ(t, t0, x0)) ·

∂λ

∂x0
(t, t0, x0) ,

so µ(·) = ∂λ
∂x0

(·, t0, x0) : Imax(t0, x0) → R satisfies the given differential equation (the variational
equation). We have to still check the initial condition, which follows from differentiating the second
identity in (A) with respect to x0:

µ(t0) =
∂λ

∂x0
(t0, t0, x0) = 1 .

Exercise 20.

(i) We have

λ̇(t+ T, t0 + T, x0) = f
(
t+ T, λ(t+ T, t0 + T, x0)

)
= f

(
t, λ(t+ T, t0 + T, x0)

)
,

and hence, t 7→ λ(t+ T, t0 + T, x0) is solution of (2) satisfying the initial condition x(t0) = x0. Due to
uniqueness of solutions, we get

λ(t+ T, t0 + T, x0) = λ(t, t0, x0) for all t ≥ t0 .

To prove the second equality, note that we have

λ̇(t+ T, t0, x0) = f
(
t+ T, λ(t+ T, t0, x0)

)
= f

(
t, λ(t+ T, t0, x0)

)
,
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which means that we t 7→ λ(t + T, t0, x0) is a solution of (2) satisfying the initial condition x(t0) =
λ(t0 + T, t0, x0). Again, due to uniqueness of solutions, we get

λ(t+ T, t0, x0) = λ(t, t0, λ(t0 + T, t0, x0)) for all t ≥ t0 .

(ii) Assume that ν0(t0) ≤ ν1(t0). Firstly, ν0(t0) = λ(t0, t0, x0) = x0, and hence,

νk(t) = λ(t+ kT, t0, x0) = λ(t+ kT, t0, ν0(t0)) ≤ λ(t+ kT, t0, ν1(t0))

= λ(t+ kT, t0, λ(t+ T, t0, x0))
(i)
= λ(t+ kT + T, t0, x0) = νk+1(t)

for all t ≥ t0 and k ∈ N0. The case ν0(t0) ≥ ν1(t0) can be treated analogously.

(iii) Assume without loss of generality that t0 = 0. Let x0 = µ(0). Then for the initial pair (t0, x0) =
(0, µ(0)), the general solution λ(t, 0, x0) = µ(t) exists for all t ≥ t0, so the assumption of (i) is
satisfied. We only consider the case x0 ≤ λ(T, 0, x0), which implies ν0(0) ≤ ν1(0). Due to (ii), we get
νk(t) ≤ νk+1(t) for all k ∈ N0 and t ≥ 0, which means that for all t ≥ 0, the sequence {νk(t)}k∈N0

is monotonically increasing. Since µ is bounded, this sequence is convergent, and we define the limit
function ν : R+

0 → R via the pointwise limits

ν(t) = lim
k→∞

νk(t) for all t ≥ 0 .

We divide the remaining proof into four steps.

Step 1. {νk}k∈N0 converges uniformly on [0, T ] to ν.
Since µ is bounded, there exists an M > 0 such that

|νk(t)| = |λ(t+ kT, 0, x0)| = |µ(t+KT )| ≤M for all k ∈ N0 and t ≥ 0 .

The functions νk : R+
0 → R are also differentiable, and we get the estimate

|ν̇k(t)| = |f(t, νk(t))| ≤ sup
(s,y)∈[0,T ]×[−M,M ]

|f(s, y)| =: L for all k ∈ N0 and t ≥ 0 .

Here, the supremum on the right hand side is finite, since the continuous function f is bounded on
the compact set [0, T ]× [−M,M ]. The fundamental theorem of calculus implies then

|νk(t1)− νk(t2)| =
∣∣∣∣∫ t1

t2

ν̇k(s) ds

∣∣∣∣ ≤ L|t1 − t2| for all k ∈ N0 and t1, t2 ∈ [0, T ] .

Let ε > 0. Choose a natural number R > 3LT
ε and fix ti := T i

R for all i ∈ {0, . . . , R}. For each such
i ∈ {0, . . . , R}, the sequence {νk(ti)}k∈N0 is convergent and thus a Cauchy sequence. Therefore, there
exists an Ni ∈ N with

|νn(ti)− νm(ti)| <
ε

3
for all n,m ≥ Ni .

For an arbitrary t ∈ [0, T ], there exists an i ∈ {0, . . . , R− 1} with t ∈ [ti, ti+1], and we get

|νn(t)− νm(t)| ≤ |νn(t)− νn(ti)|+ |νn(ti)− νm(ti)|+ |νm(ti)− νm(t)|

≤ L|t− ti|+
ε

3
+ L|ti − t| ≤ ε for all n,m ≥ max{N0, . . . , NR} .

This implies the uniform convergence on [0, T ].

Step 2. The limiting function ν is a solution of (2).
Due to (i), we get the identity

νk(t) = λ(t+ kT, t0, x0) = λ(t, 0, λ(kT, 0, x0)) = λ(t, 0, νk(0)) for all t ≥ 0 and k ∈ N0 .
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We take the limit k →∞ and obtain

ν(t) = λ(t, 0, ν(0)) for all t ≥ 0 ,

where we used the continuity of the general solution. This implies that ν is a solution of (2).

Step 3. The function ν is periodic with period T . Due to (i), we have

νk(T ) = λ(T + kT, 0, x0) = νk+1(0) for all k ∈ N0 ,

which implies in the limit k →∞ that ν(T ) = ν(0). Since the right-hand side is periodic with period
T , this implies that the solution ν is T -periodic.

Step 4. Proof of limt→∞(µ(t) − ν(t)) = 0. Let {t`}`∈N be a sequence converging to ∞, and choose a
sequence {k`}`∈N such that

t` − k`T ∈ [0, T ) for all ` ∈ N

(note that this sequence is uniquely determined). Then also k` → ∞ as ` → ∞, and we get using
Step 3 that

|λ(t`, 0, x0)− ν(t`)| = |νk`(t` − k`T )− ν(t` − k`T )| for all l ∈ N .

Due to Step 1, the right hand side of this equality converges to 0 as `→∞, and thus

lim
t→∞
|λ(t, 0, x0)− ν(t)| = 0 ,

which finishes the proof.
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